
Template Builder User Guide
Version 3.3

•

•
•
•

•

•
•

Copyright ©2025 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed,
stored in a retrieval system, translated into any language, computer language, or transmitted
in any form or by any means, electronically, mechanically, magnetically, optically,
chemically, photocopied, manually, or otherwise, without prior written permission from
Vizrt.
Vizrt specifically retains title to all Vizrt software. This software is supplied under a license
agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication “as is” without warranty of any kind, either expressed or
implied. his publication may contain technical inaccuracies or typographical errors. While every
precaution has been taken in the preparation of this document to ensure that it contains
accurate and up-to-date information, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained in this document. Vizrt’s policy is one of continual development, so the content of this
document is periodically subject to be modified without notice. These changes will be incorporated in new editions
of the publication. Vizrt may make improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time.
Vizrt may have patents or pending patent applications covering subject matters in this
document. The furnishing of this document does not give you any license to these patents.

Antivirus Considerations

Vizrt advises customers to use an AV solution that allows for custom exclusions and granular performance tuning to
prevent unnecessary interference with our products. If interference is encountered:

Real-Time Scanning: Keep it enabled, but exclude any performance-sensitive operations involving Vizrt-
specific folders, files, and processes. For example:

C:\Program Files\[Product Name]
C:\ProgramData\[Product Name]
Any custom directory where [Product Name] stores data, and any specific process related to [Product
Name].

Risk Acknowledgment: Excluding certain folders/processes may improve performance, but also create an
attack vector.
Scan Scheduling: Run full system scans during off-peak hours.
False Positives: If behavior-based detection flags a false positive, mark that executable as a trusted
application.

Technical Support

For technical support and the latest news of upgrades, documentation, and related products,
visit the Vizrt web site at www.vizrt.com.

Created on

2025/06/30

http://www.vizrt.com

Template Builder User Guide - Version 3.3

3

Contents
1 Overview... 7

1.1 Workflow.. 7

1.2 Feedback and Suggestions... 8

1.3 Support.. 8

2 Configuration ... 9

2.1 Open Template Builder and Connect to Pilot Data Server ... 9

2.2 Specifying Preview Server, Graphic Hub REST and Crop Server .. 9

2.2.1 Open, Edit and Save Settings ..9

2.3 Monitoring Server Status .. 10

3 Managing Templates.. 11

3.1 See Also:... 11

3.2 Creating and Opening Templates .. 12

3.2.1 Creating a Template ..12

3.2.2 Opening a Template ..13

3.3 Concept Manager .. 14

3.4 Template Properties ... 16

3.4.1 Template Properties ..16

3.4.2 Video Timeline Duration ..16

3.4.3 Update Service ...17

3.4.4 Concepts & Variants ...17

3.5 Template Compatibility.. 19

3.5.1 Mixed Workflow..19

3.5.2 HTML Based..19

3.5.3 HTML Based Legacy Template ..19

3.6 Categories and Channels .. 20

3.7 Pilot Collections .. 22

3.7.1 Organizing Concepts, Templates and Tags ..22

3.7.2 Creating Pilot Collections ..23

3.7.3 Connecting Pilot Collections to Authentication ...25

3.8 Import and Export... 27

3.8.1 Exporting ..27

3.8.2 Importing..28

4 Working with Templates.. 31

Template Builder User Guide - Version 3.3

4

4.1 Template Layout ... 32

4.1.1 Creating a Template ..32

4.1.2 Adding Alternative Layout Forms..33

4.2 Template Fields... 36

4.2.1 Field Tree ..36

4.2.2 Field Properties ..40

4.2.3 Field Types..42

4.2.4 Data Entry...46

4.2.5 Inline HTML Fragment ...61

4.2.6 Inline HTML Panel ..67

4.2.7 Hidden and Read-only Expressions ..69

4.3 Custom HTML Templates ... 70

4.3.1 Use PayloadHosting with NPM ..70

4.3.2 Manually Include PayloadHosting in HTML ..70

4.3.3 Configure Custom HTML Pages and Panels..72

4.3.4 Overview of Key Mechanisms ..74

4.3.5 Quick Start Code Samples ...78

4.4 Auto-generated Title... 88

4.5 Environment Variables ... 89

4.5.1 Defining Environment Variables..89

4.5.2 Using Environment Variables ..89

4.6 Custom Execution Logic ... 91

4.6.1 Execution Logic Editor ...92

4.6.2 Working with Execution Logic ...92

4.7 Update Service .. 96

4.7.1 Enabling Update Service in a Template..96

4.7.2 Pilot Update Service with Javascript in Template Builder ..97

4.7.3 External Update Service ..103

4.8 Template Scripting ... 104

4.8.1 Script Technology and Security ..104

4.8.2 Initialization ...105

4.8.3 Jump to Preview Point ..105

4.8.4 Temporary Storage ..106

4.8.5 Field Access ..106

4.8.6 The Script Editor ..113

4.8.7 Quick Start Examples...116

5 Action Panels.. 120

Template Builder User Guide - Version 3.3

5

5.1 Key Concepts... 121

5.2 UI Design with HTML Fragments .. 121

5.2.1 Enable User Interaction ...122

5.3 Internal Scripting .. 123

5.3.1 Trigger a Media Sequencer (MSE) Command ...123

5.3.2 Send Viz Engine Commands ..125

5.3.3 Display a Message to the User ...125

5.4 Host the Action Panel ... 126

6 Multiplay Presets.. 127

6.1 Creating a Preset Template .. 127

6.2 Adding Default Content to Channels.. 127

6.3 Saving a Preset Template ... 128

7 Viz Mosart Timing Information .. 129

7.1 Configuration .. 129

7.2 MOS XML .. 131

7.3 Customization through Scripting... 132

7.4 Examples ... 132

7.4.1 Limit Destinations per Template...132

7.4.2 Filter Destinations..133

7.4.3 Enabling only Full Screen ..133

7.4.4 Conditionally Show "Is Locator" ...133

7.4.5 Set Default Timing Values..133

8 Troubleshoot.. 135

8.1 Create New Button Not Displayed on UI.. 135

8.2 GH Scenes Tree Not Displayed when Pressing Create New .. 135

8.3 An Error Message is Shown when attempting to Open a Scene ... 135

8.4 Preview Server Error Message Shown when trying to Open a Scene ... 135

8.5 Scene Blocked due to Outdated or Empty Geom.. 135

8.6 Support.. 136

9 Additional Information .. 137

9.1 Keyboard Shortcuts .. 138

9.1.1 Graphics Preview Player Shortcuts ...138

9.2 Overview of Media Types .. 139

9.3 Transition Logic and Combo Templates.. 141

9.3.1 What is Transition Logic (TL)?..141

9.3.2 How does TL Work?..141

Template Builder User Guide - Version 3.3

6

9.3.3 Working with Transition Logic and Combo Templates..142

9.4 Previewing Content... 145

9.4.1 Viz Scene - OnPreview() ...146

9.5 Overview of Control Plugins ... 149

9.5.1 Supported Viz Artist Control Plugins...149

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 7

•
•
•
•

1 Overview
Template Builder lets you make customized templates using scene import or existing templates from Viz Pilot's
Template Wizard. This user guide shows you how to customize templates.

1.1 Workflow
A simplified version of the workflow follows below:

Scenes are made in Viz Artist.
The scenes are imported into Template Wizard, where templates are made.
Templates are edited and new templates can be made in Template Builder.
The template is saved in the Viz Pilot system and is available to newsroom and control room systems for
playout.

Info: A key feature is that you can add custom HTML panels to templates, giving full control over the
template through custom scripting and logic.

Note: Changes made to a template in Template Builder are not be available when opening the template in
Template Wizard.

https://docs.vizrt.com/viz-pilot.html

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 8

•
•
•
•

1.2 Feedback and Suggestions
We encourage suggestions and feedback about our products and documentation. To give feedback and/or
suggestions, please contact your local Vizrt customer support team at www.vizrt.com.

1.3 Support
Support is available at the Vizrt Support Portal.

For more information about all Vizrt products, visit:

www.vizrt.com
Vizrt Documentation Center
Vizrt Training Center
Vizrt Forum

http://www.vizrt.com/
https://community.vizrt.com/
http://www.vizrt.com
http://documentation.vizrt.com/
http://www.vizrt.com/training/
http://forum.vizrt.com/

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 9

•
•

•
•

1.
2.
3.
4.
5.

2 Configuration
This section covers the following topics:

Open Template Builder and Connect to Pilot Data Server
Specifying Preview Server, Graphic Hub REST and Crop Server

Open, Edit and Save Settings
Monitoring Server Status

For software and hardware requirements, please check the Viz Pilot Edge User Guide.

2.1 Open Template Builder and Connect to Pilot Data Server
Template Builder opens as a web application in your default browser.

The URL to access Template Builder, if hosted on Pilot Data Server, is: http://pds-hostname:8177/app/
templatebuilder/TemplateBuilder.html. Template Builder then tries to connect to a Pilot Data Server on the same
host, unless another the Pilot Data Server URL is specified in the pilot URL parameter: http://examplehost:8177/
app/templatebuilder/TemplateBuilder.html?pilot=http://another-host:8177.

2.2 Specifying Preview Server, Graphic Hub REST and Crop Server
Template Builder connects to Graphic Hub REST to import scenes, to Preview Sever to generate snapshot previews
of scenes, and crop server to offer a crop tool for images. All these servers need to run, and their end points need to
be specified in the Settings of Pilot Data Server, to which Template Builder connects.

2.2.1 Open, Edit and Save Settings
The Pilot Data Server settings are stored in the Pilot database, and apply to all Pilot Data Server instances
connecting to this database.

Access the Pilot Data Server Web Interface (http://pds-hostname:8177).
Click the Settings link.
Search for the relevant setting.
Add or modify the setting.
Click Save.

Preview Server (PS)
Preview Server manages one or more Viz Engines, providing frames for thumbnails and snapshots in an ongoing
preview process.

Follow the procedure above, and select the preview_server_uri setting, and add the URL for the machine on which
you installed Preview Server (usually http://previewserver-hostname:21098).

Note: All applications with a connection to the database now have access to Preview Server.

http://docs.vizrt.com/viz-pilot-edge.html
http://pds-hostname:8177/app/templatebuilder/TemplateBuilder.html
http://examplehost:8177/app/templatebuilder/TemplateBuilder.html?pilot=http://another-host:8177
http://previewserver-hostname:21098

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 10

Graphic Hub REST (GH)
The REST service of Graphic Hub used to store your scenes must be specified explicitly in Pilot Data Server.

Follow the procedure above and select the graphic_hub_url setting, and add the URL for the machine on which your
scenes are stored (usually http://gh-hostname:19398). Note that this setting is pointing to the Graphic Hub REST
end point.

Crop Server (CS)
A crop service is normally run on the same computer as Pilot Data Server. When specified in settings, the Viz Pilot
Edge user can open a crop tool to crop images.

Follow the procedure above and select the crop_service_uri setting, and add the URL for the machine on which Crop
Server is running (usually http://pds-host:8178).

2.3 Monitoring Server Status
Green icons at the bottom of the interface show the server status of the service end points mentioned above, and
which database you are currently connected to. Hover over the icons to see the URL and CTRL + Click to open Pilot
Data Server Settings. Note that the status does not refresh unless Template Builder is reloaded in the browser.

Note: This connection needs authentication from the Pre-authenticated Hosts part in the Search Providers
settings.

Note: GH REST status info is based on the graphic_hub_url parameter
mentioned above, not Graphic Hub's search provider settings.

http://gh-hostname:19398
http://crop-host:8178

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 11

•
•
•
•
•
•
•

•

3 Managing Templates
This section covers the following topics:

Creating and Opening Templates
Concept Manager
Template Properties
Template Compatibility
Categories and Channels
Pilot Collections
Import and Export

3.1 See Also:
Transition Logic and Combo Templates

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 12

•
•
•

3.2 Creating and Opening Templates
All templates created in Template Builder must be based on one or more Viz Artist scenes. Properly organizing and
importing scenes into a template is a critical step in the template creation process. These scenes determine the
graphics displayed on-air once the journalist has entered the required data and the operator triggers playback in
the graphics renderer.

The process begins with creating a new concept. Concepts function as organizational containers for content and
must be established in the system before any templates can be created. Additional templates can be added to a
concept later. Unlike traditional folders, templates in Template Builder can belong to multiple concepts, allowing
to create global templates that can be shared across concepts.

See Concept Manager to learn how to create a new concept.

Once the concept has been created in the system, you can proceed to create templates.

3.2.1 Creating a Template

Click in the upper right corner of Template Builder.
The Scene Manager window opens.
Click +Add Scene.

The Scene Browser appears, containing all of the scenes stored in Graphic Hub to which you are connected:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 13

•

•

•

•

•
•

•

Enter a search term or browse the folder structure. Once you have selected the correct scene or scenes,
press OK to add them to the template.
If you want to assign the scene to a different concept, right-click it and select Replace concept:

Select an existing concept and click OK.

Click Apply to go back to the template with its auto-generated fields.

3.2.2 Opening a Template

Click the Home button to show templates available within the Viz Pilot system.
Use Concepts and Tags to filter templates. The search can also be narrowed down by searching for the
template name in the Type to search... field at the top of the dialog.
Double-click a template to open it.

Note: The Graphic Hub containing your scenes is specified through the graphic_hub_url setting in Pilot
Data Server.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 14

3.3 Concept Manager
The Concept Manager is available by clicking the tools button on the toolbar, and selecting Concept Manager:

The Concept Manager allows you to add and delete concepts, and mark concepts as active or inactive (draft):

Activating and deactivating concepts is done by clicking the toggle button to the left of the concept name.
Inactive concepts are not visible in Viz Pilot Edge. The templates of this concept are also hidden from the Viz Pilot
Edge user. Setting a concept as inactive means it can be in draft mode for the Template Builder user. Once it is
activated, it is visible to the Viz Pilot Edge newsroom users.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 15

Adding concepts can be done by clicking the Add Concept button and entering a name for the new concept.
Concept names must be unique.

Deleting concepts can only be done if the concept has no templates. Click the 3 vertical dots to the right of the
concept name and select Delete.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 16

•
•
•
•

•

•

•
•

•
•

•

3.4 Template Properties
Template Properties
Video Timeline Duration
Update Service
Concepts & Variants

Variant Properties

3.4.1 Template Properties
This section controls some of the most important properties of a template.

Active: A template marked as active is visible in Viz Pilot Edge, otherwise it is not. This can, for instance, be
used to treat a template as a draft until it is ready to use in Viz Pilot Edge, or hide unused templates.
Legacy: Decides how the template behaves in Viz Pilot Director:

Enabled: In Viz Pilot Director. Legacy templates open in the built-in template window, but with no UI.
See below.
Disabled (default): In Viz Pilot Director 8.6 or later, the template opens in Viz Pilot Edge.

Full HTML panel URL: URL to a custom HTML page that replaces the UI generated in Template Builder. If
you add a URL to a custom HTML page, the payloadhosting JavaScript API must be used to handle the fields
and data in the template.
Tags: View and edit the Tags of the template. These tags can be used to classify and group templates.

For more information about the Legacy setting, see Template Compatibility.

3.4.2 Video Timeline Duration

The Video Timeline Duration section allows you to control timing properties for data elements based on this
template when they are added to a video timeline as overlay graphics. Typically, these properties can be left blank,
as the default duration for overlay graphics is automatically retrieved from the scene, when the template is added

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 17

•

•

to the video timeline. However, in certain cases, it may be useful to override the default duration and define
minimum and maximum duration values.

All durations are expressed in seconds.

3.4.3 Update Service
Update Service can be used to make sure the latest data is filled in automatically when the data element is taken on
air. See Update Service for more information.

3.4.4 Concepts & Variants
The template’s concepts are listed on the left side of Template Properties:

Hovering over the thumbnails, the following functionality is possible:

Upload a custom thumbnail : Select a file from the local disk. The image is resized to 320 x 180 pixels and
stored in the database.
Revert to- or refresh the default thumbnail : If reverting to the default thumbnail, the custom
thumbnail is discarded. If refreshing the default thumbnail, this generates a thumbnail snapshot from
Preview Server. This thumbnail is not saved back to the database. The default thumbnail is generated
automatically by Pilot Data Server.

Variant Properties
Expanding each concept reveals the variants for the expanded concept.

Note: After saving the template, it can take some time until the default thumbnails for all concepts are
refreshed in the browser, as Pilot Data Server does this in a background operation. Also caching in the
browser can keep the old thumbnails for a while.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 18

•

•

The following properties can be set per variant:

Category: A Category must be configured to use a specific playout channel. See Categories and Channels for
more information.
External Id: When a template has no unsaved changes, each variant can be attached to a numeric number.
Click the edit button to open the External Id dialog box where it is possible to assign a new, unique number
to this specific variant, and add a description to it. The External ID can be used by 3rd party integrators to
refer to a template with the specified concept and variant selected, to create data elements based on this
template for instance.

Warning: To make sure the template behaves correctly in Viz Pilot Edge and during playout, it is strongly
recommended that all concepts contain the full set of variants, and that variants are based on scenes that
have the same set control fields. This makes it easy to crate templates with a coherent input UI for the
user.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 19

3.5 Template Compatibility
In general, it is recommended to create a Viz Pilot Edge based workflow, instead of mixing template compatibility
between Viz Pilot and Viz Pilot Edge. There are features in Viz Pilot Edge that are not available in Viz Pilot (multiple
tags on templates for instance), and there are features that break backwards compatibility (like using auxiliary data
through scripting). But in general it should be possible to smoothly transition from Viz Pilot to Viz Pilot Edge
through the workflows described below.

3.5.1 Mixed Workflow
To use a template in both Template Wizard and Template Builder, the template must be created in Template
Wizard. It behaves as a regular template with a built in old-style UI in Template Wizard and Viz Pilot Director. The
template can also be opened in Template Builder, and an HTML based UI can be added to the template. Thus, the
template can have two UI representations, one for classic Viz Pilot, and one for the HTML based Viz Pilot Edge
workflow. The template is then automatically marked as Legacy in Template Builder.

3.5.2 HTML Based
If a template is created in Template Builder, by default, it is not marked as Legacy. This means the template is
opened in the Viz Pilot Edge HTML client when opened from Viz Pilot Director. The template has limited
functionality in Director, and can only be used to fill in data and save data elements. Neither playout nor macro
commands work on this type of template.

3.5.3 HTML Based Legacy Template
If a template is created in Template Builder, and marked as Legacy, the template can be opened in Director in the
built in window, but with no auto generated form for the graphics fields and with limited support. The template has
an auto generated dummy form that does not contain any of the fields of the scene, and it cannot be saved. The
macro commands and playout, work.

Info: It is possible to open this template in Template Wizard, remove the script and the labels with the
messages, and add the fields of the scene manually. The template then behaves just like the mixed
workflow mentioned above.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 20

3.6 Categories and Channels
Occasionally, a user might want certain types of graphics to be played out on a specific output channel. For
instance, lower thirds on one channel and full screens on another. By adding a specific category to a variant of a
template, the category’s channel is set as the default output channel when the template’s data elements are added
to a playlist.

Categories are abstract terms without any specific meaning. If two Pilot backends contain the same categories, they
can be mapped to different channels, matching the channels of the Media Sequencer’s playout profile in the
respective location.

For example, two network stations import a template having Category set to FULLSCREEN. The first station maps
FULLSCREEN to channel vizengine01, while the second station maps the FULLSCREEN category to channel station-
viz2. When adding data elements based on this template to a playlist, the mapped channel is added to the data
element and the graphic is played out on the correct viz engine.

The same channel can be mapped to multiple categories, but one category can only be mapped to a single channel.

To open the Categories and Channels dialog, click the button on the toolbar and select Categories and
Channels.

Note: The channel name needs to exist in the Media Sequencer’s active profile, when playing the graphics
out.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 21

In the Categories section, the left list contains all the categories in the Pilot database, while the Channel list to the
right shows which channel the category is mapped to. Select the desired channel for each category with the
dropdown.

To apply a Category to a variant of a template, open the template and go to Template Properties.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 22

3.7 Pilot Collections
Pilot Collections allow you to restrict the templates available to Viz Pilot Edge users. A Pilot Collection can include a
list of concepts and tags that define which templates a journalist can access. Only the templates belonging to the
specified concepts, and optionally containing the assigned tags, are accessible to the user when a particular Pilot
Collection is selected in the interface.

If authentication is enabled, each logged-in user can be restricted to a specific number of collections. This limitation
is managed by assigning special roles to the user in the identity provider.

For example, journalists in the main office working with news, might be restricted to using templates from the
"News" and "Sports" concepts, which include the tags "bugs," "lower thirds," and "fullscreens." When, for example,
the user "John" logs into Viz Pilot Edge, his authorized collection is automatically selected, limiting his access to the
two assigned concepts and their appropriately tagged templates.

3.7.1 Organizing Concepts, Templates and Tags
The simplest way to use Pilot Collections to organize templates, is to align the concepts in the Pilot system with the
specific needs of user groups. For example, if a group of journalists primarily works on a limited set of TV shows, it
may be logical to create a concept for each show and assign the relevant templates to those concepts. If templates
are reused across multiple concepts, this poses no issue, these templates appear in all applicable concepts and
open in the context of the selected concept. This ensures journalists are guided directly to the appropriate graphics
for the show they are working on.

Once a practical set of concepts is established, they can be added to Pilot Collections. Each user can then be
authorized to access one or more of these collections.

Using Tags to Restrict Access
If concepts alone are insufficient to organize templates and finer control over template accessibility is required,
tags can be used to provide additional granularity. For instance, consider a scenario where two groups of
journalists work on the same TV show: one group focuses on editing videos in an NLE workflow, Viz while the other
prepares live studio graphics. While creating separate concepts for each group is an option, it can quickly lead to an
unmanageable number of concepts. Instead, templates within the shared concept can be tagged with appropriate
identifiers, and these tags can be added to Pilot Collections.

For example, within the "News" concept, templates might be tagged as "NLE." A specific Pilot Collection could then
limit a user to accessing only templates from the "News" concept that include the "NLE" tag. By marking this tag as
mandatory in the Pilot Collection, the user is restricted to templates with this combination, and they cannot
deselect the tag or switch concepts.

Using Tags to Organize Templates
Alternatively, tags can complement concepts without imposing additional restrictions. In this case, concepts define
the primary organizational structure, while tags serve to help users find the right template type. For instance,
templates can be systematically tagged with labels like "FULL," "L3," "LOGO," and "BUGS." These tags can be
included in Pilot Collections to guide users to the appropriate templates without limiting their overall access.

In the Viz Pilot Edge template search interface, users can use the Any tag operator to search by tag. By checking a
tag in the dropdown, they can quickly filter and view templates that match their selection.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 23

1.
2.

3.7.2 Creating Pilot Collections
To create a new Pilot Collection, open the Pilot Collections Editor from the Tools menu on the Template Builder
toolbar:

In the Pilot Collection Editor:

Click the plus button to add a new Pilot Collection.
Right-click any existing collection to delete, duplicate, or rename it.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 24

1.
2.

•

Adding a Concept or Tag
Once a new Pilot Collection has been created, you can add concepts and/or tags to the collection:

Search for the desired concepts or tags in the list of Unassigned Concepts or Unassigned Tags.
Hover over the list and click the plus button to add a concept or tag to the Pilot Collection.

Default Concepts
If a Pilot Collection contains more than one concept, you can designate one of them as the default selection for the
Viz Pilot Edge user. For instance, this could be useful if one concept contains templates for a daily show, while the
other concepts are used less frequently, such as for special events.

Click the star icon to the right of the concept name to toggle which concept is set as the default:

Note: It is important to assign each Pilot Collection a meaningful and persistent name, as this name may
be used to match roles within the authentication system.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 25

•

•

•
•
•
•

Default Tags
In the Viz Pilot Edge UI, users can check multiple tags during a template search and choose whether to use the OR
("Any Tag") or AND ("All Tags") operator. Pilot Collections allow you to define which tags should be selected by
default for users in the Viz Pilot Edge UI.

Click the star icon to toggle whether it should be selected by default for the user:

These default settings are intended to guide the user. However, the user can freely check or uncheck tags in the
search interface.

Mandatory Tags
If tags are used to restrict the user's accessible template collection, you can mark one or more tags as mandatory.

These tags are always selected for the user and cannot be deselected. Enforce the AND ("All Tags") operator,
meaning that templates must include all mandatory tags, in addition to any optional tags checked by the user in
the search interface.

Click the lock icon to toggle the mandatory state of a tag:

3.7.3 Connecting Pilot Collections to Authentication
In an open system, all journalists have access to all collections in the UI and can choose to view all available
content. While this approach can still guide users toward the appropriate templates for their show, a more
restrictive and controlled setup can be achieved by connecting Pilot Collections to the Authentication system. In
this configuration, a user's profile or group determines which collections they can access, based on role-to-
collection name matching.

Role-Based Access Control
These roles already define the user's access level and determine which application they can access:

pilot-journalist
pilot-editor
graphic-designer
pilot-admin

Access to Pilot Collections is controlled by assigning additional roles to users within the Authentication system.
Roles prefixed with pilot-collection- are used to match authenticated users to specific collections. For example:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 26

•

•

•
•
•

A user with the roles “pilot-journalist” and “pilot-collection-news”, only has access to the Pilot Collection
named news.
Users can have multiple roles, allowing them to access multiple Pilot Collections.

Example Use Case
If a journalist has the following roles in the authentication system:

pilot-journalist
pilot-collection-news
pilot-collection-sports

This user is only able to access Viz Pilot Edge, and both the news and sports collections are available in the UI,
based on these assigned roles.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 27

•
•
•

•
•
•
•

3.8 Import and Export
Exporting

Step 1 - The Export Window
Step 2 - Review

Importing
Step 1 - Upload File
Step 2 - Select Items
Step 3 - Review

It is possible to export templates and data elements from the Pilot system and save it to a file. This file can be used
to import the content into another Pilot system. The file format is JSON, and this format is not compatible with the
XML files exported from Viz Director or Template Wizard.

3.8.1 Exporting
Select Export from the tools menu in Template Builder:

Step 1 - The Export Window
The export window contains the same user interface as in Template Builder, with the lower right panel as the export
panel.

Note: The Viz Engine scenes are not exported with the templates. They need to be exported explicitly from
Viz Artist or Graphic Hub Manager.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 28

•
•
•

1.

2.
3.

To export data elements and templates:

Drag templates or data elements into the lower right panel.
Double click items in the export panel to remove them.
Click Review to proceed.

Step 2 - Review
In the review window, a summary of the export is shown, including the data elements, concepts and templates that
belong to the exported content.

Enter a file name for the exported content. The file extension is .json and the file is downloaded to the
download folder of the browser.
Optionally, enter a description of the exported content. This is useful to include a change log or similar.
Finally click Export to download the exported content.

3.8.2 Importing
The importer lets you import content from a previously exported JSON file. Note that this format is not compatible
with exports from Viz Director or Template Wizard.

Select Import from the tools menu in Template Builder:

Note: When exporting a data element, the template and the concept are automatically included in the
exported file. If the template has an external ID or a defined Category, these are also exported implicitly.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 29

•
•

•

•

Step 1 - Upload File

Drag a file to the import panel or click to browse for a file.
If the file is accepted by the importer, and the exported file contains a description, the description is shown.

Click Next to proceed.

Step 2 - Select Items
On this step, you can see the list of templates and data elements in the archive, where you can select the items to
import. Filter and search the list of items in the archive by using the filter options on the toolbar above the lists:

Select single or multiple items from the list and add them to the list of items being imported:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 30

• Click Next to proceed.

Step 3 - Review
The last window does a check of all the items and displays a summary of the items being imported:

1.
2.

3.

Note:
Importing a data element also explicitly imports the template of the data element.
If the template being imported already exists in the database, you can choose to skip or overwrite
the existing one.
Data elements are always imported as new, and never overwritten.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 31

•
•
•
•
•
•
•
•

4 Working with Templates
For simple use cases, the auto-generated template is often usable out-of-the-box after importing scene(s). Though,
in a professional newsroom workflow, advanced customization is needed. There are numerous of ways a template
can be customized in Template Builder:

Template Layout
Template Fields
Custom HTML Templates
Auto-generated Title
Environment Variables
Custom Execution Logic
Update Service
Template Scripting

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 32

•

•
•

•

•
•

•
•
•

1.
2.

3.

4.1 Template Layout
Editing a template's layout makes it easy to create fill-in forms for journalist. With drag & drop functionality,
creating new fill-in forms is quick and easy.

When a template is created, only the auto-generated form is displayed. The layout of this form cannot be
modified.
Adding new tabs enables you to quickly create additional fill-in forms based on selected fields.
When adding new tabs, the default auto-generated form is accessible in the All tab. The auto-generated tab
can be hidden from the Pilot Edge user.
In the additional tabs, it is possible to resize, move, edit, add and delete fields quickly.

This section covers the following topics:

Creating a Template
Adding Alternative Layout Forms

Adding, Moving, and Resizing Fields
Renaming, Deleting and Reordering Tabs
Hiding and Showing the Auto-Generated Tab

Follow the steps below to get started.

4.1.1 Creating a Template
Open or create a new template and add a scene.
Click Fill-in form. The default view is then displayed:

The toolbar in the middle has the following functions for the Fill-in-form:
 Add a new Tab (fill-in form). All tabs are visible in Viz Pilot Edge.
 Enter layout edit mode. Only enabled in additional tabs, not enabled for the default auto-generated All

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 33

1.
2.
3.

1.
2.
3.

form. Click this to be able to move and resize fields.
 Allow temporary editing of read-only fields. This is only when working with the template in Template

Builder, it is not stored anywhere.
 Reveal hidden fields. In the auto generated All mode, some system fields are also revealed (for instance

the title, the auto generated title, the resolved concept and variant).
 Refresh HTML panel(s) in the template or the full HTML panel if the template is represented by a custom

HTML panel.

4.1.2 Adding Alternative Layout Forms

To create an additional template representation, click the Create New Tab button :

Enter a new title for your new tab and click OK:

There are 3 ways of adding fields to the new form by selecting one of the following options:

The All option in the dialog box, then all fields in the auto-generated form are added to the new form.
The Selected option only includes selected fields in the new form.
None creates a new empty form.

Adding, Moving, and Resizing Fields
Click an additional tab (not the All tab).
Use drag and drop from the field view to add fields to the fill-in form.
Move and resize fields by clicking the ruler button to enter edit layout mode, and then grabbing the edges
of each field:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 34

•
•

Renaming, Deleting and Reordering Tabs
Right click an additional tab (not the auto-generated All tab) to reveal the following functionality:

Now you can rename, reorder or delete each tab.

Hiding and Showing the Auto-Generated Tab
You can hide the auto-generated All tab from the Viz Pilot Edge user:

Click Template Properties.
Select Hide generated form:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 35

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 36

•
•
•

•
•
•

•

4.2 Template Fields
The left window in Template Builder contains the field tree. The initial fields reflect the exposed Control plugins in
the imported scene(s), but it is possible to add fields that are not bound to plugins in the scene. Each field has a
type, and numerous properties that alter the behavior of the field.

Fields can be restricted: for example, to only include text with a certain amount of characters, numbers within a
specific range, or media placeholders for media assets, or be displayed as options in a drop-down list.

The fields can be manipulated in various ways to decide how data is entered into the field. See Data Entry.

Field representation in the UI can also be replaced with an inline HTML panel.

Field Tree
Sub Fields
Text Fields

Field Properties
Image Constraints
Default Search Parameters

Field Types

4.2.1 Field Tree
The field tree contains the Name (field ID) and Label, which are also shown in the Fill-in form. The icon beside each
line in the tree indicates the Type of content in the field.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 37

At the top of the field tree there is a filter option. By typing in this box, the field tree is filtered to contain only
matching items. The filter searches both in the name (field ID) and the Label columns.

Fields can be rearranged by drag-and-drop within the field tree. Right-click a field to open a menu where additional
fields can be added.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 38

Sub Fields
In the Field tree we can find the main fields and the sub fields:

In this case, sub fields are Control Plugin properties of the main field. In Viz Artist, the scene designer has chosen to
expose kerning and font for the main text field:

Info: Only fields created in Template Builder can be deleted and given a new Name (field ID). Fields bound
to the scene have a fixed name and cannot be deleted, nor can the type be changed.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 39

•

•

•

Sub-fields can also be used in Viz Artist and Template Builder to group fields. This is important when using Feed
Browser functionality to bind multiple child fields to the parent field:

In Viz Artist, the three Control Plugins above are named 1.name, 1.role and 1.title in the Viz Artist scene. When
using the dot naming notation in Viz Artist, Graphic Hub and Template Builder group these fields as parent/
children.

Text Fields

Multi-line text: Multi-line text supports standard ASCII characters. It does not support any type of text
formatting and does not convert any text. It keeps the text as it was typed.
Single-line text: A single-line text field converts any white-space to space. White-space includes space, tab,
newline, etc. Single-line text converts any white-space to the space character you get by pressing the
spacebar KEY only. For Template Builder, this is also a text field with a single-line entry, unlike multi-line
text.
Formatted text: Formatted text refers to the ability to hold formatted text. For example, a formatted text
field can show that some of the texts are bold or italic, for example, when a field has Rich-Text functionality.

Although such a display is not yet completely supported (no Rich-text support yet) on our payload text field,
formatted text is used so that if a field has a formatted type text created in Viz Artist, the field type can also
be selected in Template Builder.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 40

•
•
•
•
•

•

•
•
•
•
•

•

4.2.2 Field Properties
The Field Properties window is located below the Field Tree window. It displays the properties of a selected fields
in the Field Tree.

Multi-selection: If several fields are selected in the Field Tree (CTRL + click), a subset of the field properties is
displayed. If the selected fields have different field property values, the Field Properties window displays a multiple
values state. Changes made in the Field Properties window are immediately applied to all the selected fields.

Note that the set of properties displayed depends on the Type of the field. The following properties are available:

Label: Specifies the label of the field in the Fill-In Form.
Tip: A tooltip text can be entered to provide more information about the field.
Read-only: The field remains visible, but is grayed out in the Fill-In Form.
Hidden: Hides the field in the Fill-In Form.
Publishing variable: Viz Story specific property. Can be used to link the field to a system field affecting the
playout or publishing of the template.
Regular expression: Defines constraints for the value in the field, using Regex. See the table below for
examples.
Preview point link: If set, clicking on/selecting the field, also shows the given preview point in the Preview.
Type: The field type. might be changed here.
Max length: Text fields only, see comments in table below.
Single-line: Formatted text fields only, see comments in table below.
Data entry: Set how data is entered into the field. Drop-down list of all field types. For more information, see
Data Entry.
Read-only and Hidden expression: Basic Javascript eval expression that decides whether a field should be
hidden or read only. This can be used instead of scripting to build conditions based on values in other fields.
See Hidden and Read-only Expressions for more information.

Regex Description Example

[a-zA-Z]+ Match a word containing only letters. MyLongWord

^[A-Z][a-z\s]*$ Match a string starting with capital letter containing only
lowercase letters and space.

This is a
sentence

\d+ Match a sequence of digits. 123489

\b[A-Za-z0-9._%+-]
+@[A-Za-z0-9.-]+\.
[A-Za-z]{2,}\b

Match a typical email address. joe@microsoft
.com

Info: A Regular Expression (or Regex) is a pattern (or filter) that describes a set of strings that match the
pattern. In other words, a regex accepts a certain set of strings and rejects the rest.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 41

•
•
•

1.
2.
3.

4.

5.

Image Constraints
For fields of type Image, it is possible to set image constraints to force the Viz Pilot Edge user to select an image
having the correct aspect or a minimum resolution.

Specify standards for image quality and size using either or both of the following:

Minimum size of the image (pixels): Number of pixels (width or height), irrespective of aspect ratio.
Aspect ratio: Any number describing the proportional relationship between the image with and height.
Allowed error: Specifies a margin for the constraints when an image is selected.

Default Search Parameters
For the types Image, Video, Font, Geometry and Material, it is possible to define default search parameters that
are used by the media search that is launched when you click on the field:

Click the field in the field tree.
Click the Set button under Default search parameters to open a media search window.
Select search provider, and/or enter text in the search field, select whether to show all items or to limit by
time from the Show drop-down list, and/or selecting tags from the Tags drop-down.
Choose whether the currently selected search provider should be a part of this default search or not. The
search provider is included in the default search parameters, meaning that any time the Viz Pilot Edge user
clicks the image to search, this search provider is pre-selected. If Exclude search provider is checked, the
last used search provider is used when the Viz Pilot Edge user clicks an image. This is only useful when the
search parameters only contains parameters that are compatible throughout all types of search providers
(for example, Any time / Last Month etc).
Save by clicking OK.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 42

4.2.3 Field Types
The type of content allowed in the field in Default Values is set by using the drop-down list under Type. Depending
on the type selected, different sub-options become available, as specified in the table below.

There are two main field type categories: scalar and list. Fields of all types apart from the list type are referred to as
scalar fields. Fields using the list type are referred to as list fields.

The following types are available:

Type Ic
o
n

Media Type
(XSD Type)*

Comments

Empty Makes the field unavailable in the Fill-in form. Typically used as
grouping for other fields.

Multi-
line text

text/plain
(string)

Max length: Sets the maximum number of characters allowed in
the field.

https://www.w3.org/TR/xmlschema-2/#string

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 43

Type Ic
o
n

Media Type
(XSD Type)*

Comments

Single-
line text

text/plain
(normalizedSt
ring)

Max length: Sets the maximum number of characters allowed in
the field.

Formatt
ed text

application/
vnd.vizrt.richt
ext+xml

Max length: Sets the maximum number of characters allowed in
the field.

Single-line: Check this box to specify that the rich-text editor
allows one line of text only.

Boolean text/plain
(boolean)

Creates a checkbox that has two states: true and false.

Integer text/plain
(integer)

This field is an integer field.

Minimum: Sets the minimum value allowed in the field.

Maximum: Sets the maximum value allowed in the field.

Decimal text/plain
(decimal)

This field allows decimal numbers.

Minimum: Sets the minimum value allowed in the field.

Maximum: Sets the maximum value allowed in the field.

Date
and
time

text/plain
(dateTime)

Use the Date Chooser in Default Values to select date and time
in this field.

Date text/plain
(date)

Use the Date Chooser, or the individual editors for day, month
and year in Default Values, to select the date in this field.

Two
number
s
(duplet)

application/
vnd.vizrt.dupl
et

This field allows two numbers (decimal numbers are allowed).

Minimum: Sets the minimum value allowed for both numbers.

Maximum: Sets the maximum value allowed for both numbers.

Three
number
s
(triplet)

application/
vnd.vizrt.tripl
et

This field allows three numbers (decimal numbers are allowed).

Minimum: Sets the minimum value allowed for all three
numbers.

Maximum: Sets the maximum value allowed for all three
numbers.

https://www.w3.org/TR/xmlschema-2/#normalizedString
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#date

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 44

Type Ic
o
n

Media Type
(XSD Type)*

Comments

Image application/
atom+xml;
type=entry;m
edia=image

Makes the field available for an image.

Image Constraints: Enable this option if you want to set
constraints on the image.

Minimum Size of the image (pixels): Specifies the minimum
allowed image dimensions in pixels. Both width and height must
be at least this big.

Aspect Ratio (width x height): Specifies the aspect ratio of the
image.

Allowed Error (%): Specifies the maximum stretch limit for both
the width and height of the image, in relation to its defined
aspect ratio.

Video application/
atom+xml;
type=entry;m
edia=video

Makes the field available for a video.

Font application/
vnd.vizrt.viz.f
ont

Makes the field available for a font.

Geomet
ry

application/
vnd.vizrt.viz.g
eom

Makes the field available for a geometry.

Material application/
vnd.vizrt.viz.
material

Makes the field available for a material.

Map application/
vnd.vizrt.curi
ous.map

Makes the field available to present and edit a map.

Custom Lets you freely specify the media and XSD type.

https://tools.ietf.org/html/rfc4287#section-4.1.2
https://tools.ietf.org/html/rfc4287#section-4.1.2

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 45

•

•

Type Ic
o
n

Media Type
(XSD Type)*

Comments

List Lists may be modified by adding and removing columns in the
Field Tree.

To add columns to a list - right-click the columns node under the
list field node in the Field Tree and select Add column.
To remove a column - select the column field in the Field Tree and
press Delete, or right-click it and select Delete field.

Minimum number of rows: Defines the minimum allowed
number of rows in the list.

Maximum number of rows: Defines the maximum allowed
number of rows in the list.

Color text/
vnd.vizrt.colo
r

Text (for example: #140E7E or rgba(255, 0, 0, 1)).

* For more information on media types, see: Overview of Media Types.

Note: List fields are fundamentally different from scalar
fields. It is therefore not possible to change a list type to
a scalar type and vice versa.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 46

•
•
•

4.2.4 Data Entry
The Data entry field property specifies how users should fill in field values.

Manual
Selecting Manual in the Data entry drop-down list does not give access to any additional settings for the field. The
default is for the input to the field to be a text box with manual input.

Radio buttons and Drop-down
Radio buttons (vertical and horizontal) and Drop-down makes it possible to create a list of static options for the
user to choose from. See Radio Button and Drop-down.

Double Drop-down
With the Double drop-down it is possible to add a two-level selection, letting you set multiple sub-choices for each
primary choice. See Double Drop-down.

Field Linking to a Feed
The following options specifies that the field should get its value from a property of an Atom or RSS feed entry.

Linking a field value using Feed Browser, see Field Linking with Feed Browser.
Linking a list field to a feed, see Feed Linking to Tables.
Using a feed-backed dropdown instead of a Feed Browser, see Feed-backed Drop-down.

Dynamic Drop-down
The Dynamic drop-down option allows you to create a dynamic drop-down with items read from the value of
another field. Whenever the (hidden) source field is changed, the drop-down items are updated. See Dynamic Drop-
down.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 47

•
•
•

•

Radio Button and Drop-down
Selecting Drop-down or one of the radio button options, lets you see the content in a static list, which may in some
cases make it easier and less error-prone to fill the template with the right content.

Example: OMO Plugin
When a Control Object moving (Omo) plugin is accessible in the template, scenes using Omo plugins are originally
presented as integer values for the different elements in the Fill In Form. The Drop-down and radio buttons
options can assign text to these values to make it easier to select the right element.

The example below contains a scene with a sponsor logo having different display options in the graphics. For the
Omo plugin, these options correspond to the values 0, 1 and 2 respectively.

To assign text to these values:

Select the Omo field in the Field Tree.
Select Horizontal radio buttons in the Data entry drop-down list.
Add alternatives in the inline list editor:

The Omo field in the Fill In Form now contains a drop-down list or radio buttons, containing the alternatives
created above as text, as opposed to an integer field where the user had to remember which integer
corresponds to which position.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 48

•
•
•

1.

2.
3.
4.
5.
6.

7.

8.

a.
b.

Dynamic Drop-down
The entries of a drop-down can be dynamically populated based on the value from another (hidden) field in the
template, or from the temporary $data object that is not stored in the payload.

The drop-down is populated with a JSON string from the source.
Whenever the source is changed, the drop-down is re-generated.
Use case: A natural workflow is to use the onLoad() event to fetch data and populate the source
whenever data elements based on this template is opened in Viz Pilot Edge.

Example - onLoad() Populating a Drop-down
Follow these steps to create a dynamic, data driven drop-down that is populated each time a data element is
opened:

If using a field as a source for the drop-down, create a new single-line text field that may be called source.
This acts as the source of the drop-down item (this field can be hidden).
Create a single-line text field, for instance called drop-down. This is where your drop-down is displayed.
In the drop-down single-line text field, click on it to have the properties displayed.
In the Data entry property, click on the Dynamic drop-down alternative.
Once the alternative is added, a new text field right below called Linked source field appears.
Fill the Linked source field with your own key in the custom data object, for instance $data.mykey .
Alternatively, the name of your first single text field, which in this example is source.

Within the source field, you can add data, either manually through the source field directly, or from the
script editor like shown below.
The data must be in JSON array format: [{"label": "my label1", "value": "my value1"}, {"label": "my label2",
"value": "my value2"}, {"label": "my label3", "value": "my value3"}]

The label property is what is displayed in the drop-down.
The value property is what is being stored in the data element (this is eventually sent to Viz Engine).

Populate Drop-down Source Field in onLoad() Event

// onLoad() is executed each time a data element based on this
// template is loaded in Pilot Edge

Note: In the following example we use the temporary vizrt.$data as the source for the drop-down. This
object acts like a key-value map where it is possible to add any data as a string, to a key in vizrt.$data, but
using a hidden source field in the model is also possible in the example below. The source data is then
stored in the payload.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 49

vizrt.onLoad = () => {
 fetch("http://myhost/app/teams.json")
 .then(r => r.text())
 .then(result => {
 vizrt.$data.mykey= result
 console.log("Fetched: ", result)
 }
).catch(e => console.log("Error: ",e))
}

In the example above, the teams.json file looks like this:

 [{"label": "Tottenham Hotspur", "value": "tottenham"}, {"label": "Liverpool",
"value": "liverpool"}, {"label": "Manchester City", "value": "mancity"}]

The format is a JSON array. This line can be pasted directly into the drop-down source field for testing purposes.

The result looks like this (with the source field visible):

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 50

•
•
•
•

•
•

Double Drop-down
With the Double drop-down it is possible to add a two-level selection, letting you set multiple sub-choices for each
primary choice.

For example, if the choices list different countries, sub-choices could list cities in each country.

Mark the desired Field ID in the Field Tree.
Select Double drop-down in the Data entry field.
Fill in the primary choices in the inline table.
For each primary choice, enter the table editor and add sub choices.

A new table for sub alternatives appear. Fill the table and click back when complete.
Instead of a text field in the Fill In Form, the field now contains two drop-down lists: the main choices, which
in this case is a list of countries, and sub-choices, with corresponding cities.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 51

•
•

•
•
•

•
•
•

•
•

•

Field Linking with Feed Browser

Using Feed Browser
Feed URL

Browse a Graphic Hub Feed
Select from Feed Item
RSS Mapping

Using Feed Browser
Feed Browser specifies that the field should get its value from a property of an Atom or RSS feed entry. If the field is
a sub-field of another field that has enabled feed browser, the option is named Parent feed browser. Otherwise, it is
named Enable feed browser.

If the Enable Feed Browser option is selected, a Browse button appears next to the field in the fill-in form.
Click Browse to open the Feed Browser dialog.
In the Feed Browser, the items of the feed are presented (with thumbnails, if available), and one of the
entries can be selected.
Information from the selected item is used to fill in the feed browser enabling field and its sub-fields.
Alternatively, if Feed-backed drop-down is selected, the feed is presented as a drop-down.

Feed URL

Specify the feed URL for the field. The URL must be accessible from the Viz Pilot Edge browser and lead to a valid
Atom XML or RSS feed:

Browse a Graphic Hub Feed

The Feed Browser can be used to browse Graphics Hub for images, material, geoms and fonts. To quickly build a
valid URL to a folder in Graphic Hub, follow these steps:

For an image field, select Enable Feed Browser as a data entry.

Note: To be able to fill in multiple fields from a single selection in the feed browser, fields must be sub-
fields of the field that enables the feed browser.

Note: Internet servers can have strict CORS policies denying access to their feed from within Viz Pilot Edge.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 52

•

•

•

•

•
•
•
•

Click the folder icon to browse the configured Graphic Hub:

After browsing to the target folder and clicking Ok, the Feed URL points to this folder, for instance:

http://examplehost:19398/folder/221DEABE-B112-2F49-BC3C-5C3CD64A8AFE/

The {$GH} environment variable can be used to build the base URL part. This variable resolves to the
configured Graphic Hub on Pilot Data Server (for example, http://gh-host:19398/). If the Graphic Hub
configuration changes in the Pilot Data Server settings, the template points to the new configuration
automatically:

{$GH}/folder/221DEABE-B112-2F49-BC3C-5C3CD64A8AFE/

The folder UUID part can be built dynamically based on either a field value or a key in the $data scripting
object. This can be handy if the feed browser must open in different locations based on another user’s
choice in the template. For instance:

{$GH}/folder/{myfield}/
{$GH}/folder/{$data.currentFolder}/

Select from Feed Item

This option binds the element of a feed item (title, link, content etc.) to the value of the current field. This is a 1:1
relation between the feed item and the field value, but it is fully possible to bind a feed item to multiple fields in the
template. For example, if you select a story from a feed and title, content, author and image are applied to the
template. To accomplish this, the fields in the template need to be grouped under a parent field. See Sub Fields for
more information on this.

These are the fields in Atom/RSS that can be linked to:

<Not linked>: Not linked to the feed item, and must be filled in manually.
Content: Linked to the content of the atom:content element in the atom entry.
Title: Linked to the content of the atom:title element in the atom entry.
Link: Linked to the href attribute of the atom:link element in the atom entry. The link entry to pick depends
on the Link-rel in atom entry property and the type of the field (the first link with a correct rel attribute and a
type that matches the type of the field is chosen).

Note: The options available for a given field depend on the type of the field (the atom namespace prefix
represents the http://www.w3.org/2005/Atom namespace, and the media namespace represents the
http://search.yahoo.com/mrss/ namespace).

http://gh-host:19398/
http://www.w3.org/2005/Atom
http://search.yahoo.com/mrss/

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 53

•

•

•

•

•

•
•
•
•
•

Entry: Linked to the atom entry itself. This option should be used to link an image field to a feed entry from a
Graphic Hub feed.
Author name: Linked to the content of the atom:name element inside the relevant atom:author element, if
the entry itself contains an atom:author element that is used. Otherwise, the atom:author element of the
feed is used.
Author e-mail: Linked to the content of the atom:email element inside the relevant atom:author element, if
the entry itself contains an atom:author element, that is used. Otherwise, the atom:author element of the
feed is used.
Author URI: Linked to the content of the atom:uri element inside the relevant atom:author element, if the
entry itself contains an atom:author element, that is used. Otherwise, the atom:author element of the feed is
used.
Contributor name: Linked to the content of the atom:name element inside the atom:contributor element in
the atom entry.
Published: Linked to the content of the atom:published element in the atom entry.
Updated: Linked to the content of the atom:updated element in the atom entry.
Thumbnail: Linked to the url attribute of the media:thumbnail element in the atom entry.
Summary: Linked to the content of the atom:summary element in the atom entry.
Link-rel in Atom Entry: Only available if Link is selected in the Select from atom entry property. It specifies
the rel attribute of the link element in the atom entry.

RSS Mapping

The feed browser in Template Builder works with Atom XML, but also supports a minimal mapping from standard
RSS items according to the RSS 2.0 specification: https://www.rssboard.org/rss-specification.

The media namespace xmlns:media="http://search.yahoo.com/mrss/ is specified in https://www.rssboard.org/
media-rss.

RSS Template Builder Comment

<title> Title

<description> Summary

<pubDate> Updated, Published RSS has only one field when the item is
published.

<author> Author e-mail In RSS, the <author> element is strictly
specified as an e-mail address.

<enclosure type ="
image/jpeg ">

Thumbnail, Link
rel="enclosure"

Both Thumbnail and Link with link relation
"enclosure" map to the <enclosure> element in
RSS.

Note: A linked field may also be filled in manually if it is not hidden or read-only.

https://www.rssboard.org/rss-specification
http://search.yahoo.com/mrss/
https://www.rssboard.org/media-rss

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 54

RSS Template Builder Comment

<media:content
type="image/jpeg">

Thumbnail, Link
rel="content"

Both Thumbnail and Link with link relation
"content" map to the <media:content> element
in RSS.

<media:thumbnail> Thumbnail

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 55

•
•

•

•

•

Feed-backed Drop-down
The Feed-backed drop-down option works exactly like the Enable feed browser option, but displays the results in a
drop-down instead of in the feed browser window:

Example: Link Image Field to Graphic Hub Folder
In this example we set up a link from an image field in the template to a Graphic Hub folder, and present the result
in a sorted drop-down.

For the image field in the template, choose Feed-backed drop-down from Data entry.
The Feed URL should point to a Graphic Hub folder, and we added a search term parameter to display only
images. The URL is part of the Graphic Hub REST API.
To quickly build a valid URL to a folder in Graphic Hub, follow these steps:

Click the folder icon to browse the configured Graphic Hub:

The {$GH} environment variable can be used to build the base URL part. This variable resolves to the
configured graphic hub on Pilot Data Server (for example, http://gh-host:19398/).
Alternatively, to build the URL manually, add /files/ to the base URL of Graphic Hub, and add the UUID
of the folder to the URL. This value can be copied from Viz Artist when browsing in Asset view:

http://gh-host:19398/

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 56

•

•

•
•

Add the ?term=IMAGE to the URL. For instance:

 {$GH}/files/BAA340C1-C71E-0949-BCF6-F7E043856030/?term=IMAGE

In the Select from feed item drop-down, select Entry. This certifies the complete Atom entry is put into the
field, making it playable for Viz Engine.
Click Sort by title to make the entries sorted.
The result should be a sorted drop-down with the images in the Graphic Hub folder.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 57

•

Feed Linking to Tables
The Viz Artist plugin ControlList is commonly used to create tables with rows and columns. Filling data manually to
a table can be a tedious task, and there are numerous ways of integrating data into the Viz Artist scene. To allow a
Viz Pilot Edge user to select a data set and fill in the table automatically, link the ControlList field in the template to
an Atom feed where the content of the feed is a CSV formatted text.

The data in this feed can also automatically update data on air, through the Update Service’s Auto Update function.
For instance, polling data changing live as the poll takes place. The latest numbers from the feed can automatically
be played out by the control clients, and can also update live on air.

To accomplish this, consider the following example:

Reporters in 3 cities execute a live poll of the citizen’s favorite winter activities. Whenever the poll graphics is
played in the Viz Engine, the name of the current city and the latest numbers should be used. We can
accomplish this through the following steps.

Design the Scene with a ControlList and Hierarchical Fields
In Viz Artist, create a scene with the ControlList plugin for the table with the data, and a ControlText plugin on the
title field. These fields live independently and have to be filled in separately. But in Template Builder, we want to fill
in both fields when the Viz Pilot Edge user selects a feed entry. Therefore, they need to be connected in an
hierarchical way. This can be done by naming the field with the “dot notation”:

01.TITLE
01.BAR-INFO

By giving them the same prefix, the fields have a common parent field called “01”. This is the field we link to the
feed.

Create a Template based on the Scene
In Template Builder, create a new scene and select the newly created scene. In the field tree of the new template,
the TITLE and BAR-INFO fields are children of 01:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 58

•
•

This template can now be saved, and if opened in Viz Pilot Edge, the user can fill in the title and data for the table
manually. Though, in this example we want to simplify the data input and let the user choose from a data feed.

Serve Out a Feed with the Data
To select among data entries, an Atom Feed needs to be served out from a web server. It is fully possible, but not
recommended for production, to serve out files from the Pilot Data Server’s “/app” folder. The file with the Atom
Feed needs to be accessible via an URL from the Viz Pilot Edge web browser. Below is an example with one feed
entry:

<feed xmlns="http://www.w3.org/2005/Atom">
 <entry>
 <title>Bergen</title>
 <id>entry-bergen</id>
 <updated>2025-01-10T12:05:00Z</updated>
 <content type="text/csv">
NUM,TEXT
40,Hiking
30,Skiing
15,Ice skating
15,Snowboarding
 </content>
 <published>2025-01-10T14:26:17.290Z</published>
 <link rel="self" type="application/atom+xml;type=entry" href="http://bgo-
eddie-vm:1305/data/csv/bergen.entry.xml"/>
 </entry>
</feed>

Note that the <content> of the feed entry is a regular CSV-formatted string with type text/csv.

To map the CSV string to the fields in the table, the following assumptions are made:

The first row in the CSV file contains the column names for the columns in the list field.
The row names are mapped to column names in the list fields. In our example there are tow columns in the
CSV file called NUM and TEXT, and these names must exist as columns in the list field:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 59

•
•

•
•

•

1.
2.

3.

4.

5.

The mechanism does not allow binding the list fields with children.
The supported field types for the columns are string (single and multi-line), integer, decimal, integer and
boolean.
Use CSV cells as written by Excel.

Cells containing commas (,) or double quotes (") are enclosed in double quotes (").

Any double quote within a cell is represented by two consecutive double quotes ("").

Link the Columns to the Feed
In our example we want to link the TITLE field in the template to the <title> of the feed entries, and we want to link
the columns of our BAR-INFO list field to the <content> of the feed entries. In the Viz Artist scene design, the two
fields were organized under a common parent field called 01.

As Data Entry for the field 01, specify Enable Feed Browser or Feed-backed Drop-down.
Enter the feed URL.

When a parent field is linked to a feed, the child fields can be linked as well. This means that we can link
TITLE and BAR-INFO to the feed in parent 01.
For the TITLE field, select Title from the Select from feed item drop-down. Now the TITLE field is linked to
the <title> of the selected feed entry.
For the BAR-INFO field (the list field), select Content from the Select from feed item drop-down. Now the
columns of the BAR-INFO field are linked to the CSV <content> of the selected feed entry.

The expected result is for the Viz Pilot Edge user to open the template, and select from any entry in the field, filling
in the title and the table automatically. For Feed-backed Drop-down, the result should look like this:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 60

Info: When data is bound to the template with feed linking, Pilot Update Service can be enabled in “Auto
update” mode for this template. When Media Sequencer takes data on air, the latest content from the feed
entry is used. This is useful for sports results, polls, weather data or stocks (data that changes live). Media
Sequencer can also update data while on air.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 61

•
•
•
•

•
•

•
•

•
•
•

1.
2.
3.

4.2.5 Inline HTML Fragment
In the auto generated form and in the custom layout tabs, it is possible to add an inline HTML fragment. The HTML
content of this fragment is restricted to selected tags and attributes (see below). It can be used to insert custom UI
elements into the template. The HTML button can also be linked to a click-handler in internal scripting, enabling the
possibility to add special functionality when the user clicks the button. The HTML fragments are stored inside the
template, so no need to host these fragments on a web server.

Note that external CSS styling is not supported. All styles need to be inline.

Adding an HTML Fragment
Adding an HTML Fragment to the Auto-generated All Tab
Adding an HTML Fragment to the Custom Layout Tabs
Z-order

Use Bindings
Adding a Clickable Button

Example
Allowed HTML Tags and Attributes

White-listed Tags
Black-listed Tags
White-listed Attributes

Adding an HTML Fragment
The inline HTML fragment can be added both to the auto-generated All tab, and to the custom layout tabs.

Adding an HTML Fragment to the Auto-generated All Tab
Right-click the field tree.
Select Add UI panel > HTMLfragment.
Add an ID to the new field.
The HTML fragment is now a part of the field tree for the All tab.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 62

In the field editor for HTML fragments the maximum height can be set and the actual HTML can be entered.
See below for HTML tag and attribute limitations for the HTML entered into the box.

Adding an HTML Fragment to the Custom Layout Tabs
For the Custom Layout tabs, the UI components like HTML panels and HTML fragments, are not part of the field tree
on the left. They float inside the custom layout tabs and can only be reached by clicking them in the UI.

To add an inline HTML fragment into a custom layout tab, follow these steps:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 63

1.
2.
3.

4.

Create or select a custom layout tab.
In the middle toolbar, click the Add HTML fragment to current view button.
Enter an ID for the fragment.

A new HTML fragment is now added to the form.

Click the ruler to toggle edit and view mode: .

Z-order
In the current version of Template Builder, the only way of specifying the Z-order of the components, is to add them
to the form in the right order. The first component added to the form is in the back layer, then each component
added has a higher Z-index, and the last component added is on top.

Use Bindings
From inside HTML fragments, it is possible to use values from fields and environment variables. Examples:

HTML fragment Note

Headline: {{01-HEADLINE}} Display the value from the field called 01-HEADLINE.

<img src="{{$PDS}}/

pilotedge-3.0/

vizPilotEdgeLogo.svg">

Use the value of the built-in environment variable
“PDS” and use it in a URL.

Version: {{$version}} Use the user-defined environment variable “version”.
This variable can be defined in a URL parameter to Viz
Pilot Edge or Template Builder, for instance:

https://pds-host:7373/app/templatebuilder/
templatebuilder.html?$version=4-0

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 64

1.
2.

3.

Adding a Clickable Button
Inside an HTML fragment, it is possible to add an HTML button. Scripting inside HTML fragments is not allowed, but
there is a way to add an event handler to the button to enable internal template scripting on click.

Add a <button> in the HTML fragment.
Add a special attribute vizrt-click-name to the button, specifying how a click on this button can be identified
in internal scripting.
Add an internal script event handler for onClick and check for the value of the attribute above.

In the HTML fragment:

<button vizrt-click-name="updatebutton">UPDATE</button>

The name can then be checked for internal template scripting:

vizrt.onClick = (name: string) => {
 if (name === "updatebutton") {
 // Do something
 }
}

Example
Inside the HTML fragment, you can basically use HTML tags without scripting nor links, and with inline CSS styling.
This is due to security and layout reasons, but there is quite a lot of flexibility still.

<p style="color: red;">This text is red.</p>
<div style="background:black;width:200%;height:100px">Background black</div>
 <p style="position:absolute; top:100px; left:200px; background:white;
color:blue;font-size:26px;">
 I'm a big, blue, strong paragraph
 </p>

<button vizrt-click-name="updatebutton">UPDATE</button>

You then have the following panel:

Info: The field binding is supported for the following field types: Single- and multiline, numbers, boolean
and date.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 65

Allowed HTML Tags and Attributes
Note that styling must be inline. Fragments do not support external CSS with the <STYLE> tag.

White-listed Tags

ABBR
ADDRESS
AUDIO
ARTICLE
ASIDE
B
BDI
BDO
BLOCKQUOTE
BR
BUTTON
CAPTION
CITE
CODE
COL
COLGROUP
DATA
DATALIST
DD
DEL

DETAILS
DFN
DIV
DL
DT
EM
FIELDSET
FIGCAPTION
FIGURE
FOOTER
FORM
H1
H2
H3
H4
H5
H6
HEADER
HGROUP
HR

I
IMG
INS
KBD
LABEL
LEGEND
LI
MAIN
MAP
MARK
MENU
METER
OL
OPTGROUP
OPTION
OUTPUT
P
PICTURE
PRE
PROGRESS

Q
RP
RT
RUBY
S
SAMP
SEARCH
SECTION
SMALL
SOURCE
SPAN
STRONG
SUB
SUMMARY
SUP
TABLE
TBODY
TD
TFOOT
TH

THEAD
TIME
TR
U
UL
VAR
VIDEO
WBR

Black-listed Tags
These tags cannot be used in inline HTML fragments, either because they expose a security risk, they conflict with
the application, they need to be bound to script, or they make no sense inside the <BODY> of an HTML fragment.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 66

AREA
A
BASE
CANVAS
DIALOG

EMBED
HTML
IFRAME
INPUT
LINK

NAV
NOSCRIPT
OBJECT
PARAM
SCRIPT

SELECT
STYLE
SVG
TEMPLATE
TEXTAREA

TITLE

White-listed Attributes
These are the allowed attributes inside tags in an HTML fragment.

The attributes must be in lower case: alt, datetime, height, kind, label, name, src, srclang, style, title, type,
width.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 67

1.
2.
3.
4.

•
•

4.2.6 Inline HTML Panel
An HTML panel can be added to the template as part of the template customization workflow, giving you full
control through custom scripting and logic when building the template. The panel is displayed inside an iframe and
needs to be hosted on an external web server. Inside the custom HTML panel, the use of the PayloadHosting API
connects your panel to the fields of the template.

See samples/html_panels/README.html under the Template Builder installation folder for samples and more
details.

Adding an HTML Panel
The HTML panel can be added both to the auto-generated All tab, and to the custom layout tabs.

Adding an HTML Panel to the Auto-generated All Tab
Right-click the field tree.
Select Add UI panel > HTML panel.
Alternatively, right-click a field in the field tree and select Add HTML panel before/after.
Add a field ID to the new UI field.

The HTML panel is now a part of the field tree for the All tab.

Select the new field ID in the field tree to show its properties in the Field Properties window:

Adjust the size of the HTML panel shown in the fill-in form using the Height field.
In Source URL, enter the web address.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 68

•

1.
2.
3.

1.
2.
3.

•
•

The Hidden fields drop-down list allows you to hide available fields in the fill-in form.

Adding a HTML Panel to the Custom Layout Tabs
For the Custom Layout tabs, the UI components like HTML panels and HTML fragments, are not part of the field tree
on the left. They float inside the custom layout tabs and can only be reached by clicking them in the UI.

To add an inline HTML panel into a custom layout tab, follow these steps:

Create or select a custom layout tab.
In the middle toolbar, click the Add iframe panel to current view button.
Enter an ID for the panel.

Using Environment Variables in URLs
When adding URLs to a template, either a full page custom HTML template URL or an URL to an HTML panel inside
an iframe, the URL can contain environment variables. These variables can be set as URL parameters to the
application, or picked up from the application's built in variables. For example, if the URL to the application is
http://mypds:8177/app/pilotedge/pilotedge.html&$version=v1, then the value of URL parameters starting with the
dollar sign are available inside the application, and can be used for instance when specifying URLs to HTML panels
like this: {$}http://mywebserver/templatepanels/{$version}/mypanel.html.

Therefore, the full URL used by the application is http://mywebserver/templatepanels/v1/mypanel.html. This way,
the Viz Pilot templates using HTML panels or full custom HTML pages can for instance switch to another version by
changing the URL parameter to the application.

See Using Environment Variables for full description of this mechanism.

Browser Caching
You may experience browser caching behavior when trying to update and display changes in the custom HTML
template in Template Builder, this is standard behavior. Template Builder does not control caching resources
included in the HTML file itself.

To prevent caching:

Ensure the URLs to the resources are unique upon reload.
Optionally configure the web server serving the resources to send Expiry headers set to 0.
Disable caching on the browser side.

See also

Custom HTML Templates with examples of how to use custom HTML templates.
Environment Variables

http://mywebserver/templatepanels/{$version}/mypanel.html

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 69

•
•

4.2.7 Hidden and Read-only Expressions
Instead of writing internal script code to decide visibility or read-only properties of other fields based on selected
values, it may be a simpler option to add a JavaScript expression in the Read-only or Hidden expressions in the
properties for a field.

The Read-only and Hidden-expressions are basic JavaScript “eval” expressions that decide whether a field should
be hidden or read only. See the table below for examples.

Field references must be enclosed in double curly brackets, for example {{field01}}.
Text fields in the expression must be of type Single Line.

Expression Description

{{L301}}=="HIDE" ||
{{selector}}<2

Match if the L301 field value is "HIDE" and the numeric field
selector is less than 2.

({{V01}} / {{V02}}) *100 < 50 Match if the numeric field V01 is less than 50% of V02.

Info: Read-only and Hidden expressions support JavaScript notation to evaluate an expression. It
supports field lookup, arithmetic and logical operators.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 70

•
•
•

•

•

•

•
•

4.3 Custom HTML Templates
PayloadHosting is a JavaScript library that enables custom HTML interfaces (both full custom HTML templates and
inline HTML field editors) to interact with Template Builder and Viz Pilot Edge. It provides access to the VDF (Viz
Data Format) payload of a template, allowing you to create specialized UIs to edit template data, such as headlines,
names and images for a news story.

This section contains the following pages:

Configure Custom HTML Pages and Panels
Overview of Key Mechanisms
Quick Start Code Samples

4.3.1 Use PayloadHosting with NPM
The payloadhosting module is available as an NPM package, making it easier to integrate into modern
JavaScript and TypeScript projects. This method simplifies dependency management, improves development
workflows, and enhances compatibility with build tools.

Install the package using npm install "c:\...\js\@vizrt\payloadhosting" .

Module-Based Import: Use ES module syntax for better structure:

import { payloadhosting } from "@vizrt/payloadhosting";

Type Support: The package includes payloadhosting.d.ts , enabling IDE autocompletion and type
checking.
Maintainability: Updates and version control are handled via package.json .
Integration: Works well with modern JavaScript tooling such as Webpack, Vite, and Rollup.

4.3.2 Manually Include PayloadHosting in HTML

For projects that do not use NPM, payloadhosting.js can be included manually in an HTML file by adding a
script tag:

<!doctype html>
<html>
 <head>
 <script src="./payloadhosting.js"></script>

Note: The full API documentation is distributed with Template Builder under the location: /app/
templatebuilder/js/@vizrt/payloadhosting/dist/docs/index.html.

Note: payloadhosting.js can be found under the ./js folder of the Template Builder installation
path.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 71

 </head>
 <body>...</body>
</html>

This approach ensures window.vizrt.payloadhosting is globally available to use in your scripts.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 72

•

•

•

4.3.3 Configure Custom HTML Pages and Panels
Custom HTML pages are hosted within an iframe in Template Builder and Viz Pilot Edge. They must be served from a
web server and accessible via a URL. These pages can function either as a full-screen replacement for a Template
Builder template or as an inline panel within a template.

Specify an Inline HTML Panel

Open a template and add an HTML panel in the auto generated form, or as a UI component in a custom view,
as described in Inline HTML Panel.
In the URL field, enter the URL of the custom HTML template. In this example, the URL from Hello World
sample is: http://pdshost:8177/app/templatebuilder/samples/html_panels/helloworld/helloworld.html
Hello world now appears in the Fill-in-Form:

Use a Full Screen Custom HTML Page
With a full screen HTML, it is possible to replace the built-in template with a custom HTML representation that
replaces the whole template. The URL to the custom HTML page must be set in Template Properties:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 73

The custom HTML page replaces the whole UI:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 74

•
•
•
•
•
•
•
•

•

•

•
•

•

•
•

•

•

•

•
•

•

4.3.4 Overview of Key Mechanisms
The payloadhosting.js script acts as a bridge between a custom-built UI and the underlying VDF model,
handling data exchange, automatic field bindings, and event-driven updates.

Initialization
Accessing the VDF Payload (Data)
Event-Driven Updates
Automatic and Manual Bindings
Handling Lists and Complex Fields (Tables)
Invoking Native Field Editors
Communication with the Host
Security and Data Validation

Initialization

The PayloadHosting object is the core of the script.

The vizrt.PayloadHosting.initialize() function connects the HTML document to the
Template Builder host and fetches the current template payload.
If a callback function is provided, it is executed once the payload is ready.
The script automatically binds HTML elements to payload fields using element IDs with a field_ prefix ,

for instance <input id="field_headline> , has automatically a bi-directional connection to the

field headline .

Accessing the VDF Payload (Data)

The VDF payload holds the actual data entered into the template (for example, headlines, images, and other
content).
The script allows reading and modifying payload values but does not modify the model structure.
Key methods:

getFieldText(fieldPath) : Retrieves a text value from the payload.

getFieldXml(fieldPath) : Retrieves XML content from the payload.

setFieldText(fieldPath, value) : Updates a field’s text value.

setFieldXml(fieldPath, xmlString) : Updates XML content in a field.
While the script reads field definitions from the model (for example, checking if a field exists or is a list), it
does not modify the model schema.
Example: isListField(fieldPath) checks if a field is a list, but does not create or change the list
definition.

Note: The full API documentation is distributed with Template Builder under the location: /app/
templatebuilder/js/@vizrt/payloadhosting/dist/docs/index.html.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 75

•

•

•
•

•

•

•

•

•

•

•

•

•
•

Event-Driven Updates
The script listens for changes in the payload and updates the UI dynamically.

Event listeners can be registered using:

vizrt.payloadhosting.addEventListener("payloadchange", callbackFunction);

This allows custom UI components to react to external changes in real time.

Automatic and Manual Bindings

By default, payloadhosting.js automatically maps input elements (<input> , <textarea> ,

<select>) to payload fields.

This can be disabled if manual control is required:

vizrt.payloadhosting.setUsesAutomaticBindings(false);

Handling Lists and Complex Fields (Tables)
The script supports list fields, allowing users to manage repeating elements in a template.

Methods for managing lists:
addListFieldItem(fieldPath) : Adds an item to a list.

removeListFieldItem(fieldPath, index) : Removes an item from a list.

getListFieldLength(fieldPath) : Returns the number of items in a list.

A fieldPath is a string that describes the location of a field in the payload.

Top-level field: "myList" (if myList is a list field).

Nested field: "container/myList" (if myList is inside container).

List item reference: "myList/#0" (first item in myList).

Field inside a list item: "myList/#2/name" (the name field inside the third item of myList).

Lists in payloadhosting.js can effectively be used as tables because each list item can contain
multiple sub-fields, similar to rows and columns in a table.

Each list item is a row.
Each sub-field inside a list item is a column.

Invoking Native Field Editors

The payloadhosting.editField(fieldPath, editRequestParameters?) method allows a
custom HTML UI to trigger the built-in Template Builder editor for a specific field in the payload. This is especially
useful for editing complex data types, such as images, videos, or formatted text, using Template Builder’s native
editor instead of standard HTML inputs.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 76

•

•

•

•

•
•

•

•

•

•

Syntax:

vizrt.payloadhosting.editField(fieldPath, editRequestParameters);

Parameters:

fieldPath (string, required): The path to the field in the payload that should be edited.

editRequestParameters (optional): An object that provides additional options for the edit request,
such as predefined values, constraints, or configurations for the editor.

Communication with the Host

The payloadhosting.js script communicates with the host application (Template Builder and Viz Pilot Edge)

using the postMessage() API. Messages are exchanged between the custom UI and the host to update and
retrieve data.

Sending messages to the host: When changes occur in the payload, payloadhosting.js sends
updates to the host using:

this._host.postMessage({ type: "data_changed", changes: [...] },
getHostOrigin());

Receiving messages from the host: The script listens for messages, such as new payload data, using an
event listener:

window.addEventListener("message", (event) => {
 if (event.data.type === "set_payload") {
 console.log("New payload received:", event.data.xml);
 }
});

Types of Messages
set_payload : The host sends updated payload data to the custom UI.

data_changed : The UI notifies the host of modifications made to the payload.

request_model_info : The UI requests the model schema from the host.

provide_model_info : The host provides the requested model schema.

Security and Data Validation

The payloadhosting.js script includes multiple security measures to ensure safe data handling and prevent
unauthorized modifications:

Safe Media Handling

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 77

•

•
•

•
•
•

•
•

•
•

•
•

It ensures URLs for media assets (for example, images and videos) are correctly formatted and not
externally manipulated.
The function isSafeMediaType(type) checks whether a given media type is permitted.

Field Access Control
The script restricts modifications to registered fields only.
Any attempt to update a non-existent or unauthorized field results in an error.
Functions like fieldExists(fieldPath) ensure a field exists before attempting
modifications.

Cross-Origin Communication Restrictions
The script ensures messages are only exchanged with the expected host origin using
getHostOrigin() .

Unauthorized sources attempting to send messages are ignored.
Preventing Invalid Data

Input values are validated before being stored in the payload.
XML content for structured fields is parsed and checked before insertion using
setFieldValueAsParsedXml() .

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 78

•
•
•
•
•
•
•
•
•

•

•
•

4.3.5 Quick Start Code Samples

Hello World
Connecting to Fields
Jump to Preview Point
The Loaded and Created States in Initialize
Storing Element Data
Connecting a Custom HTML Template to a Viz Pilot Template - Advanced
Creating a List of Functions Where You Can Bind Fields
Redesigning Concept/Variant Fields
Visibility and Read-Only

Sub Fields

Hello World

The example below uses a template that shows the message Hello world when opened in a browser.

<html>
<head>
 <script src="../payloadhosting.js"></script>
</head>
<body onload="vizrt.payloadhosting.initialize(callback)">
 <h1 style="color: orange;">Hello World</h1>
 <div style="color: white;" id="hello"><div>

 <script>
 function callback(_initType, data) {
 document.getElementById("hello").innerHTML = "I am ready.";
 }
 </script>

</body>
</html>

When the HTML page is loaded, the initialize function is called with a given callback.
When Template Builder or Viz Pilot Edge has loaded the payload and the data model is ready, the callback is
called.

Note: More samples can be found at /app/templatebuilder/samples/html_panels/README.html.

Info: See samples/html_panels/helloworld/helloworld.html.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 79

•

•

Connecting to Fields
Following the example above, we can establish a two-way communication, or bind fields, between the HTML
template and the opened pilot template. This provides a simple way of setting up a binding field. Add a new field to
the template:

Make sure your template has a field called “1”, that is, right-click in the HTML panel field, choose Add field
before/after and select Single-line text.
Assign the ID 1.

This <div> must be added to the <body> block:

<div>
 <label style="color: orange;" for="field_1">My input field:</label>
 <input name="field_1" type="text" id="field_1">
</div>

Saving the HTML file and clicking Refresh HTML panels reloads the custom HTML template with the changes just
made. A bi-directional connection between the custom template and pilot template has now been established. If
you now type inside either the template or the field with ID 1, both fields are updated at the same time.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 80

The JavaScript file automatically seeks input elements in the HTML that match the ID of fields inside the template.
Adding the id="field_1" to the <input> element inside the HTML template is all that is needed for the two-way
communication to be set up since a field with ID 50 was added above. An unlimited number of these binding fields
can be established in the exact same way, since they are mapped via ID.

Jump to Preview Point

From custom HTML panels and full HTML templates, it is possible to force the preview to refresh by jumping to a
given preview point. In payloadhosting.js this is done by the method:

vizrt.payloadhosting.jumpToPreviewPoint(preview)

The preview parameter is a string with the name of the stop point or tag in the scene. Usually, the default preview
point is called “pilot1”, and if an empty string is given to the function, preview jumps to this point.

Note: This way of binding fields works for any HTML fields that have value support, typically <input> ty

pes and <textarea> .

Tip: Use the Hidden fields setting inside the HTML panel settings to prevent two editors for the same field
being visible at the same time.

Info: See samples/html_panels/jump_preview/jump_preview.html.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 81

The Loaded and Created States in Initialize
When setting up the connection between the custom HTML template and Viz Pilot Edge, the
vizrt.payloadhosting.initialize() method needs to be called. In the callback function given in the parameter to this
method, the payload is loaded ready to be accessed by custom HTML scripting. It is useful to know whether the
recently opened payload is a newly created data element, or a reopened data element. This is given in the state
parameter given to the callback. This is an example of the usage of initialize states:

<html>
<body onload="vizrt.payloadhosting.initialize(callback)">
 <script
 src="./payloadhosting.js"></script>
 <pre id="logs"></pre>
 <script>
 function callback(state, elementData) {
 document.querySelector("#logs").innerText += "Payload ready: " + state
 }
 </script>
</body>
</html>

In Template Builder the state is undefined as these events/states do not apply to templates in Template Builder,
they only apply to payloads of data elements.
In Viz Pilot Edge, the state is created for newly created data elements, and loaded for re-opened data elements.

Storing Element Data

Occasionally, custom HTML templates need to store auxiliary data that should remain private to the data element
and not be included in the payload itself. This might involve UI states that need to be reinstated when the data
element is reopened. This data is not sent to the preview server or the playout system.

Info: See /samples/html_panels/element_data/element_data.html.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 82

A special associated data object is stored in the database, alongside the data element and can be accessed using
the initialize callback:

<html>
<body onload="vizrt.payloadhosting.initialize(callback)">
 <script
 src="./payloadhosting.js"></script>
 <pre id="logs"></pre>
 <script>
 function callback(state, elementData) {
 document.querySelector("#logs").innerText += "My custom data: " +
elementData.mykey
 }
 </script>
</body>
</html>

The elementData parameter is a standard JavaScript object with string properties used as key-value pairs. This
allows flexible storage and retrieval of custom data tied to the data element.

Setting Element Data

To assign values to this data object, use the following method:

vizrt.payloadhosting.setElementData("mykey", "myvalue")

Connecting a Custom HTML Template to a Viz Pilot Template - Advanced
The example below goes into more detail than Connecting a Custom HTML Template to a Viz Pilot Template, and
uses more scripting, to give you 100% control over the template. The three files mentioned in the Setup a Simple
Custom HTML Template example are also used here.

Creating a List of Functions Where You Can Bind Fields
By adding the following above the document.ready() function in the customTemplate_sample.js file:

// Will be called when the field with id "50" changes
function on50Changed(value) {

}

And the following inside the $(document).ready function:

var pl = vizrt.payloadhosting;
pl.initialize();
pl.setFieldValueCallbacks({ "50": on50Changed });

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 83

You set up a way for a custom JavaScript function to be called upon detecting a change. When field_50 receives a
change from the host, the function is called with its new value as a parameter.

Some changes are made to the HTML file below to demonstrate that we can use custom HTML/JavaScript to do
something with these values.

Inside the HTML file, the entire body is replaced with:

<body>
 My custom 50 field
</body>

To add some CSS to style the text, add the style tag after the closing </head> tag and before the <body> tag:

<style>
 .sample {
 padding:5px;
 color:white;
 border-radius:5px;
 text-shadow:0 1px 0 black;
 background:red;
 }
 .green {
 background:green;
 }
</style>

This provides the following output in Template Builder:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 84

Adding a bit more custom logic, making the background color green when there is a text value that is longer than
five or shorter than 20 characters. The function is expanded by adding the following function:

function on50Changed(value) {
 var myField = $("#myfield");
 myField.text(value);
 if (value.length > 5 && value.length < 20) {
 myField.addClass("green");
 } else {
 myField.removeClass("green");
 }
}

After refreshing the HTML panel, the background color should change to green dynamically when typing.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 85

Redesigning Concept/Variant Fields
This example shows how to present the concepts and variants in a template in a different way.

The full HTML / JavaScript code is available at http://<pilotdataserverhost>:8177/app/templatebuilder/samples/
html_panels/concept_variant.

Consider a template with concepts Fullscreen, Lower Third, OTS and variants Red, Green, Blue available as drop-
down lists in the Fill In Form:

The field -concept-variant-choice actually contains 2 subfields, concept and variant.
You can access their value using slash "/" to navigate in the list. For example, to access the concept use -concept-
variant-choice/concept.

By setting up the HTML panel hosted at http://<pilotdataserverhost>:8177/app/templatebuilder/samples/
html_panels/concept_variant, the concepts and variants are now presented as buttons.
This example has mutual binding support for both concept and variant. Clicking on the new buttons updates the
original drop-downs and vice versa:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 86

The drop-down lists are no longer needed and can be set as a Hidden field in the HTML panel properties window:

Visibility and Read-Only
It is possible to dynamically set visibility and read-only attributes, so you can filter the auto-generated form based
on the custom HTML template. In the following example, the 31 image field should only be visible when the
Fullscreen or OTS concept is active:

Note: Visibility and read-only properties of fields can also be controlled from the Read-only and Hidden-
expressions in the field properties.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 87

•

•

•

•

In the JavaScript used in the example, there is a function called updateActiveConcept which is called when the
concept changes.

Adding the following line inside the updateActiveConcept method block, it checks which concept is chosen. If it isn't
Lower Third, it displays the field with ID 31 in the Fill In Form:

pl.setFieldVisibility("31", conceptValue != "Lower Third");

If you now click on the Lower Third, the image field with ID 31 disappears, but is displayed if the OTS or Fullscreen
concept is selected.

Sub Fields
Sub fields can be addressed by using a " / ", which is read as field/subfield.

When using duplets or triplets, the example below shows how you are able to control the value of image_scaling by
using 1/image_scaling.

vizrt.payloadhosting.setFieldText("1/image_scaling", "1 2 3")

A fieldPath is a string that describes the location of a field in the payload.

Top-level field: "myList" (if myList is a list field).

Nested field: "container/myList" (if myList is inside container).

List item reference: "myList/#0" (first item in myList).

Field inside a list item: "myList/#2/name" (the name field inside the third item of myList).

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 88

•
•
•
•

4.4 Auto-generated Title
The Title setting provides an auto-generation of the title. The title can be plain text or it can be a placeholder for
one or several field values, or it can be a combination of these. The placeholder is the {Field ID}, the example below
shows a combination of plain text, field name, and sub-field name:

A template title can be auto-generated by combining one or several of these options:

Normal text: Plain text (red).
{Field ID}: Substituted with the value of the field (green).
{Field ID/subfield ID}: Substituted with the value of the subfield (purple).
{listfieldname/#index/cellname}: Substituted with the value of the field in a row in a list. Note that the
index is zero-based.

Warning: The auto-generated title's length is not shortened in Vizrt web clients. However, if the title is
longer than 128 characters, it is reduced when dragging out the MOS XML file due to size constraints. This
affects the element title in the newsroom system.

Note: When the template uses custom HTML representation, it is highly recommended to set a pattern for
Auto-generated title.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 89

4.5 Environment Variables
In Template Builder there are some built-in system environment variables, and it is also possible to define your own
environment variables through URL parameters to the application. These URL parameters must also be added to
the Viz Pilot Edge URL when templates and data elements are using these variables. If a variable is used, but not
defined, it is possible to set a default value.

4.5.1 Defining Environment Variables
The application defines the following application specific environment variables:

Variable Value

$APP "TemplateBuilder" or "PilotEdge".

$PDS URL to the Pilot Data Server.

$GH URL to the configured Graphic Hub for scenes.

It is also possible to define custom environment variables to be used in the templates. These variables can be
specified as URL parameters to the application. Environment variable in the URL must use the format $var=value,
where the name of the variable must start with a dollar sign and the value is set after the equal sign. There can be
multiple environment values specified. For example, if the variable version can be specified like this in the URL to
the application http://mypds:8177/app/templatebuilder/templatebuilder.html?$version=v1, then the value of the
variable version can be used when specifying URLs to HTML panels, in feed URLs, expressions and auto title
formatting.

4.5.2 Using Environment Variables
In general, the notation for using environment variables is {$var|default}, where var is the name of the variable and
default is the default value if the variable is not defined.

When using an environment variable in a URL, the URL must be prepended with "{$}" if it does not start with an
environment variable.

See the examples below:

Scenario Example Description

URL to HTML
panel or full
HTML page

{$} http://
mywebserver/
templatepanels/
{$version|v1}/
mypanel.html

The full URL used by the application is http://
mywebserver/templatepanels/v1/mypanel.html if the
environment variable version is not defined in a URL
parameter.

Info: This is an example of how to define a variable called version in your URL: http://mypds:8177/app/
templatebuilder/templatebuilder.html?$version=v1.

http://mypds:8177/app/templatebuilder/templatebuilder.html&$version=v1,
http://mywebserver/templatepanels/%7B$version%7D/mypanel.html
http://mypds:8177/app/templatebuilder/templatebuilder.html&$version=v1,

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 90

Scenario Example Description

URL to a feed
of objects
from graphic
hub

{$GH} /files/
BAA340C1-C71E-0949-
BCF6-F7E043856030/

The {$GH} environment variable contains the full URL
to the Graphic Hub and certifies that if the system is
configured to point to another Graphic Hub, the link
still works.

Inside HTML
fragments

<img src="{{$PDS}}/
pilotedge-3.0/
vizPilotEdgeLogo.svg">

Note the double brackets around the variable.

Inside HTML
fragments

{{$APP}}

{{$PDS}}

{{$GH}}

Writes out the application specific environment
variables.

Auto
generated
title format

{field1} / {field2}
({$version|DEV})

Concatenates the values of field1 and field 2 and the
word DEV, if version is not defined in a URL
parameter.

In expressions {{$APP}}
==="TemplateBuilder"

Note the double brackets. This can hide a field if the
template is opened in Template Builder, when added
to the "Hidden expression" for a field in the field
editor.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 91

•
•

•
•
•
•

4.6 Custom Execution Logic
Custom Execution Logic is a way to specify Media Sequencer behavior for different actions (take, read, out,
continue, cue, out and update). The "script" logic is expressed in the Media Sequencer's own internal VDOM logic
through a simplified XML format.

Execution Logic commands are saved as part of a template. This allows data elements based on the template to use
the same execution logic commands. For example, adding an execution logic script to Media Sequencer’s command
Take, replaces the Take command for all data elements based on that template. A benefit of using Execution Logic
is that the script can be run without the need for external services or clients to be open. It is possible to use a limited
set of commands, or any Viz Engine command, straight on Media Sequencer to issue instructions.

This section contains the following topics:

Execution Logic Editor
Working with Execution Logic

Send Basic Commands
Example - Play, Continue, Take Out
Example - Forked Execution
Example - Commands Generated by a Template

Note: Custom Execution Logic is a powerful, but also potentially complex mechanism that requires expert
level understanding of Media Sequencer's internal working.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 92

•

•

•

•
•
•
•

4.6.1 Execution Logic Editor

The Execution Logic editor consists of two parts, a list of commands and an XML editor for the MSE commands. In
addition there is a status bar displaying syntax errors.

Command list: The top toolbar displays the available commands. If a command is written in bold, it has
custom logic inside. It is possible to implement some commands but not all. The commands left empty
behave as normal. It can also be useful to prevent some commands, then inserting a log line only logs and
does not execute the default action. For instance <log>CUE not supported.</log>
Command editor: Displays the currently selected command and its execution logic. Available context menu
option is Insert Default Action.

Insert default action: Inserts the default command <ref>/logic/element/run</ref> .

4.6.2 Working with Execution Logic
This section contains the following topics:

Send basic commands
Example - Play, Continue, Take Out
Example - Forked Execution
Example - Commands generated by a template

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 93

Send Basic Commands

The <viz> handler is used to send commands to Viz Engine.

The following example sends the RENDERER SET_OBJECT SCENE*... command to channel “A” in the
current profile:

<env viz="A">
 <viz>RENDERER SET_OBJECT SCENE*...</viz>
</env>

Multiple commands can be sent by separating each command with
 , for example:

<viz>RENDERER SET_OBJECT ...
RENDERER*STAGE START</viz>

Instead of setting the command directly, a more powerful approach is to use the contents of a field in the template.
The field (a hidden textbox for instance) can then be filled with the Viz commands that need to be sent.

This example shows how the contents of a data field in a data element can be retrieved by using the <ref>

construct ("field_01" is the ControlObjectName of the data field):

<env viz="A">
 <ref><var>element</var>/data/field_01</ref>
</env>

To send commands to several channels, duplicate the command:

<env viz="A">
 <ref><var>element</var>/data/field_01</ref>
</env>
<env viz="B">
 <ref><var>element</var>/data/field_02</ref>
</env>

Example - Play, Continue, Take Out
This example shows how execution logic can be used to play an element, do a Continue after five (5) seconds, and
then a Take Out after ten (10) seconds.

Note: Forked execution is required when a channel contains multiple engines, otherwise the commands
only applies to the first engine in a channel.

Note: Execution logic does not work with non-control object based templates.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 94

In the Execution Logic Editor, select the “take” command, add the logic into the editor (right pane). This means that
when a “take” is issued on a data element based on this template, Media Sequencer executes the logic.

The commands are modified to do a "take","continue" and then an "out" . The timecode for each
operation must be set.

<relative>
 <env command="take" timecode="00:00:00:00">
 <ref>/logic/element/run</ref>
 </env>
 <env command="continue" timecode="00:00:05:00">
 <ref>/logic/element/run</ref>
 </env>
 <env command="out" timecode="00:00:10:00">
 <ref>/logic/element/run</ref>
 </env>
</relative>

Example - Forked Execution
These examples show how the "take" command can be modified to make the template override the standard logic
and instead send RENDERER*STAGE START .

Here, the command is sent to the channel assigned to the data element:

<forked_exec>
 <entry name="execution_group"><var>channel</var></entry>
 <viz>RENDERER*STAGE START</viz>
</forked_exec>

To send commands to a specific channel in the current profile, replace <var>channel</var> with the name of
the channel you want to send to, as follows:

<forked_exec>
 <entry name="execution_group">MY_CHANNEL</entry>
 <viz>RENDERER*STAGE START</viz>
</forked_exec>

Example - Commands Generated by a Template
By using the information from the preceding examples, we can create logic that sends custom Viz commands that
are generated by the template.

Note: The running/outer context takes precedence over attributes on the “ref”. Instead of adding
attributes on the “ref” node, you use an “env” node as in the example above.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 95

One way would be to add a Value Control Component (see Viz Pilot > Template Wizard Components > Viz Control
Components) to the template, and set the ControlObjectName to "vizcmds" . Then create a regular script that
sets the ControlValue of the TWValueControl to whatever command needs to be sent.

Alternatively, use a standard memo box, and set the ControlObjectName to "vizcmds" . Then enter the Viz
commands (or script what the contents should be). The memo box’s visibility can be set to false so the user can’t
see it. In the Execution Logic you can then add the following:

<forked_exec>
 <entry name="execution_group"><var>channel</var></entry>
 <viz>
 <ref><var>element</var>/data/vizcmds</ref>
 </viz>
</forked_exec>

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 96

1.
2.
3.

•
•

•
•
•
•
•
•

•
•

4.7 Update Service
Update Service is a way of updating fields in a data element right before the graphics is taken on air, or during on air
time. This happens on the server side, and typical usage is updating scores, stock prices, statistics etc. The script
being run is invoked by Media Sequencer on different actions: take, read, cue and update. The script being
invoked gets a copy of the fields in the data element (the payload), it can manipulate the fields and return a
modified payload. The modified payload is then used by Media Sequencer when sending the playout commands to
the Viz Engine. The modified payload is not saved in the Pilot database. There are 3 ways of invoking an update
service:

Using the Vizrt Pilot Update Service to execute javascript templates written in Template Builder.
Implementing custom script runner on an external web server.
Using the VB script script runner in Pilot (for templates created in Template Wizard).

This section contains the following topics:

Enabling Update Service in a Template
Pilot Update Service with Javascript in Template Builder

Viz Pilot Update Service
Auto Update
Adding a Script in Template Builder
Script Technology
Example - Async Fetch from REST Source
Testing the Script

External Update Service
Implementing a Custom Server

4.7.1 Enabling Update Service in a Template
Enter the Template Properties page:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 97

•
•

•

•

•

The Update Service section has 4 available options:

None. No update service is used.
Pilot Update Service: Lets the Pilot Update Service either auto-update the template, or run the onUpdate
event handler in the internal template script (see below). In this case, the javascript in the onUpdate event is
executed on the server side by the Pilot Edge Script Runner.
VBScript (legacy): Enabled if the template is created with Template Wizard and the template contains a
VBScript.
External: Use this to specify a URL to an external update service.

4.7.2 Pilot Update Service with Javascript in Template Builder
When an update script is enabled for a template, the Media Sequencer representation (VDOM) of the master
template contains a <live_update> node. This node contains URLs to the update service responsible for updating
the payload. The result is put into VDOM and sent to the Viz Engine, but not saved back to the Viz Pilot database.

Viz Pilot Update Service
The Viz Pilot Update Service is automatically installed together with Pilot Data Server. Make sure this service runs
and is responsive and reachable from Media Sequencer. The default port is 1991 for HTTP and 1992 for HTTPS. This
service executes the onUpdate part of the template script. To determine when the script runner should be invoked
by Media Sequencer and control the behavior, the following properties can be set in the Update Script section of
Template Properties:

Pilot Update Service: Determines that the Pilot Update Service should be used to update data.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 98

•

•

•
•
•
•

•
•

•

•

•
•

Auto-update: Lets the Update Service refresh all field links to external data with the latest content.
No script is executed.
Template script: The onUpdate() in the internal template script should be executed by the Update
Service.

Action: Determines on which Media Sequencer actions the script should be invoked.
take: To get the graphics on air.
read: Used to preview the graphics on an external Viz Engine (Viz Trio for example).
update: Explicitly update data in an element being on air in the renderer, without starting in-
animations.
cue: Setting graphics in the first frame of the animation in the renderer.

Timeout: For all actions, specifies the amount of time in milliseconds Media Sequencer waits for the
response from the Update Service, before it continues with the operation.
Update regularly: For the take action, the Update Service can also be invoked on regular intervals while the
graphics are on air. The interval is decided by the live_update_interval database parameter. The default and
minimum value is 2 seconds.

Auto Update
To auto update the data without writing scripts, the fields to update need to be connected to a feed entry through
the field linking. The workflow is:

The Template Designer links fields in the template to content, through the feed browser or feed-backed
dropdown.
The journalist select a feed entry and save a snapshot of the data from the feed.
On playout, Media Sequencer calls the auto update mechanism in the Update Service, which follows the self
link in the Atom entry, to download the latest data from the feed.

Example of Atom Feed Entry with a self link used by Update Service:

<entry>
 <id>1832050330902700035</id>
 <link href="https://twitter.com/luna_corgi/status/1832050330902700035" rel="alter
nate" type="text/html"/>
 <title type="text">It's finally Friday frens!</title>
 <content type="text">It's finally Friday frens! I'm going to enjoy this beautiful
day. What are your plans for today?</content>
 <summary type="text">twitter</summary>
 <media:thumbnail url="http://myserver:9090/data/media/v1/https/flowics-
server.com/_vXH9hj3mlVUK4VowdEqA5CyjYA_C3iWkuc_Di26JEg.jpg"/>
 <author>
 <name>Luna the Corgi@luna_corgi</name>
 <link href="http://myserver:9090/data/media/v1/https/flowics-server.com/
_vXH9hj3mlVUK4VowdEqA5CyjYA_C3iWkuc_Di26JEg.jpg" rel="image"/>

Note: If Update regularly is checked, the update script action runs with the take action on subsequent
updates. However, if update is also checked, the action script is called with update as an argument. This
means you can differentiate the script behavior based on whether the Media Sequencer action is take or
update.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 99

 </author>
 <contributor>
 <name>twitter</name>
 </contributor>
 <link href="http://myserver:9090/data/media/v1/https/pbs.twimg.com/
ZNEhXojq54WQHSbxjd6pl8uXD4U4CKryXl8zE1tPTkg.jpg" rel="image" type="image/jpeg"/>
 <published>2024-09-06T13:36:51.000+00:00</published>
 <updated>2024-12-17T10:46:07.164Z</updated>
 <link rel="self" type="application/atom+xml;type=entry" href="http://my-feed-
server:1305/data/images/1.entry.xml"/>
</entry>

See also Data Entry - Using Feed Browsing.

Adding a Script in Template Builder
To add a script that is invoked by the Media Sequencer's Update Service mechanism, a special event needs to be
implemented in the internal template script editor: onUpdate. This event is never called from within Template
Builder or Viz Pilot Edge, therefore, it is only executed by the Viz Pilot Edge Script Runner service when Media
Sequencer invokes it. The mechanism is invoked by Media Sequencer only if it is enabled in Template Settings.
Make sure the Pilot Update Service / Template script option is enabled in the Update Service section in Template
Settings (see above). In its simplest form, an update script can look like this:

vizrt.onUpdate = (fields, action) => {
 fields["$02-Designation"].value = `${fields["$01-Name"].value} live from Svalbard`
}

The fields object contains a list of the fields of the payload and can be accessed as one normally accesses this object
in Template scripting. Only the field values are available and can be manipulated (and not UI properties like
visibility for instance). The (manipulated) fields object is automatically returned to Media Sequencer by the Viz Pilot
Edge Script Runner.

Script Technology
The script language in the template editor is TypeScript. All Javascript is valid Typescript, so you can choose what
you want inside the editor, but the syntax highlighting and the error checking expects Typescript. The script inside
the editor is automatically compiled into Javascript and stored both as Typescript and Javascript inside the
template. When a template script normally executes in the browser, it is executed through the browser’s Web API.

For Update Service scripts, it is slightly different. The script code executed inside the onUpdate method has a
different execution context than the rest of the template script. While the rest of the template script executes in the
web browser's javascript environment, the onUpdate part of the script executes on the server side through a
node.js process. Both execution environments support the Javascript Core Language, but they serve different
purposes and have different sets of APIs.

Warning: Even if the syntax highlighting inside onUpdate reports no errors in the template script editor,
the code can still cause errors when executed on the server side due to being executed inside a node.js
environment, and not through the browser’s Javascript API. Make sure to configure Viz Pilot Edge script
runner and test the script through the Update Service.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 100

Example - Async Fetch from REST Source
A more realistic example is where the script fetches some data from an external source and uses that to update the
fields. A typical example is updating live scores and sports results. This can be done with a javascript fetch
command and making the method marked as async. Here done only on take action in Media Sequencer (right
before the graphics go on air):

interface Team {
 name: string;
 score: string;
}

interface GameData {
 teams: Team[];
 current_quarter: string;
 game_clock: string;
}

// doUpdate() can be called both from the template itself and from
// Pilot Update Service.
async function doUpdate(fields: Payload, action: string) : Promise<void> {
 try {
 const response = await fetch('http://myscore-host:3000/app/score.json');

 if (!response.ok) {
 throw new Error(`HTTP error! Status: ${response.status}`);
 }

 const data: GameData = await response.json()

 // Log the JSON object as a string
 console.log(JSON.stringify(data, null, 2));

 processData(data, fields)

 } catch (error) {
 // Handle errors (e.g., network issues, JSON parsing errors)
 console.error('Error fetching data:', (error as Error).message)
 }
}

vizrt.onUpdate = async (fields, action) => {
 console.log("onUpdate is called")
 await doUpdate(fields, action)
}

// Method to process JSON data
function processData(data: GameData, fields: Payload) {
 console.log("processData is called")

 // Extract the current quarter and game clock

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 101

•

•
•
•

•

•

•

•

 const currentQuarter = data.current_quarter
 const gameClock = data.game_clock

 // Extract the scores for each team
 const [homeTeam, awayTeam] = data.teams
 fields["$102"].value = homeTeam.score
 fields["$202"].value = awayTeam.score
 fields["$002"].value = currentQuarter + " - " + gameClock
}

// Simulate the "take" action update script in the browser
vizrt.onClick = async (name: string) => {
 await doUpdate(vizrt.fields, "take")
}

The code above expects this JSON structure:

{
 "teams": [
 { "name": "CSU", "score": "21" },
 { "name": "Longwood", "score": "10" }
],
 "current_quarter": "2nd quarter",
 "game_clock": "3:45"
}

Interesting points about the code above:

In the code example, the OnUpdate script can be tested inside the browser (client side only) as we added a
button and a click event to manually execute the doUpdate method. This requires the code inside onUpdate
to run in the browser and in node.js. To add a button to test the script:

Add a new template Tab.
Add an inline HTML fragment.
Add the following HTML:

<button vizrt-click-name="updatebutton">TEST UPDATE</button>

We use the async fetch method to get data from an external host, and we convert it to JSON. We can use
fetch because both the browser’s Web API and node.js, contain this method and the signature is the same.
But this is not something that can be taken for granted. When using functionality outside the Javascript Core
language, please check that both the browser’s Web API and node.js implement the functionality.
A benefit of using fetch in the onUpdate run by the server side in node.js, is that it handles headers
differently (for example, CORS issues do not occur).
If the onUpdate method contains API calls that are not compatible with the browser’s Web API but only with
node.js, the update script needs to be tested by a proper server side execution.
Pay special attention to the async method declaration and use of await. An async function returns a
promise, and using await pauses execution until the promise resolves. This makes it possible to write script
code that executes synchronously and returns with a value. The onUpdate code executed by the Pilot
Update Service depends on processing everything before returning with the new payload, and forgetting an

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 102

•

•
•

1.
2.

3.

4.

5.

await if the method contains asynchronous code like a fetch leads to undefined behavior, as the script
returns with data before the processing is done.
In onUpdate, the event handler works with a copy of the fields in the payload. Notice that the code executed
in onUpdate does not change the template in Template Builder, nor invoke any onchanged events.

Testing the Script
To test a proper server side execution of the update script:

Save the template.
Click the test update script-button in Template Builder .

A new window opens, allowing you to test the script by doing a POST to the script runner URL with the source data
on the left, and the returned VDF payload on the right.

The left window contains the VDF payload of the current data element.
When clicking Update the REST end point in Pilot Update Service (as configured in the Pilot Data Server
Launcher) is called with the URL to the current data element as a parameter. Pilot Update Service then loads
the template script from the Pilot Data Server, executes onUpdate and returns with a new, updated payload.
The action parameter simulates different actions performed by a control client on the data element. This
action is sent as an argument to the update script and makes it possible to differentiate between actions in
the script.
The right panel contains the response from the Pilot Update Service. To check whether it performed the
desired updates, look for the field values it was supposed to manipulate inside the payload. Note that the
current data element in Template Builder is not updated, nor is the preview. The only result of the server
side script execution is the VDF payload in this window.
If the script contains logging to console or exceptions, these log messages are returned from the Pilot Script
Runner along with the VDF payload and displayed here. This is useful for debugging and testing. There are 4
log types available when logging in script, they are each displayed with different colors in the log window:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 103

•
•

•

console.log("LOG")
console.info("INFO")
console.warn("WARN")
console.error("ERROR")

4.7.3 External Update Service
It is fully possible to write a custom update service and omit the usage of the template script and Viz Pilot Edge
Script Runner. In Template Builder, enter Template Settings for the template and enable the External option under
Update Service.

Specify the URL to the external update service.
Specify the Media Sequencer actions that invoke the update service. Only one URL can be specified for all
actions.

Implementing a Custom Server
On the server side, to implement a custom Update Service, a web service should respond to the URL specified in the
template. The service must accept an HTTP(S) POST request on a given endpoint with a Content-Type of
application/vnd.vizrt.payload+xml. The service should only modify field values, and not add or remove fields. The
service must return an updated payload, or the same payload that was posted if there are no changes. In order to
implement an external update service, you need to parse and return a Viz Data Format (VDF) document to Media
Sequencer. The document is posted to the external update service by Media Sequencer.

See Also

For a detailed description on how Media Sequencer handles Update Service scripts, see Live Update
Support in the Media Sequencer Administrator Guide (go to http://localhost:8580/mse_manual/
dispatch_element%20actor.html#live-update-support on the host where Media Sequencer is installed). For
a description of the Viz Data Format (VDF), go to the web interface of Pilot Data Server and locate the link to
the specification.

http://localhost:8580/mse_manual/dispatch_element%20actor.html#live-update-support

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 104

•
•
•
•

•
•

•
•
•
•
•
•

•

•

•

1.

4.8 Template Scripting
Dynamic or advanced customization of the fill-in form is needed, and Viz Pilot Edge allows this through template
scripting. Scripts are written in TypeScript, and access to the template is provided via a Script API named vizrt .

It allows users to customize how templates look and behave, as well as fill in values from external sources. This
section describes how to use the script editor, and how to access the values of the fields supported in Template
Builder.

These are the following topics:

Script Technology and Security
Initialization
Jump to Preview Point
Temporary Storage

Using vizrt.$data
Dynamic Drop-Down Integration

Field Access
Accessing Concepts & Variants from Scripting
External Sources
Image Metadata
Read Only Fields
Unsupported Fields

4.8.1 Script Technology and Security
The script language in the template editor is TypeScript. All JavaScript is valid Typescript, so you can choose what
you want inside the editor, but the syntax highlighting and the error checking expects Typescript. The script inside
the editor is automatically compiled into JavaScript and stored both as Typescript and JavaScript inside the
template. When a template script normally executes in the browser, it is executed through the browser’s Web API.

When executing scripts through the browser, security is subject to the browser's default security policies. This
includes:

CORS (Cross-Origin Resource Sharing): Requests to external servers may be blocked if the correct CORS
headers are not set.
Same-Origin Policy: Scripts can only interact with resources from the same domain unless explicitly
permitted.
Sandboxing: If hosted within an iframe, additional restrictions may apply depending on the host’s
configuration.

To avoid unexpected issues, ensure that your server is properly configured to allow cross-origin access if needed.

Fetching Data from External Servers
If your script fetches data from external sources (for example, sports statistics or news feeds) and these servers do
not support CORS, you must:

Use a proxy server to relay the request.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 105

2.

•

•

Make the request through the proxy, which must be configured to handle the external API call and return
the data with appropriate CORS headers.

This ensures that your application can access external data while adhering to browser security policies.

4.8.2 Initialization
There are two global events that can be used to initialize the Fill-in Form:

onCreate: Called when template is opened in Viz Pilot Edge.

Example:

vizrt.onCreate = () => {
 // For example set startup values, initialize fields visibility, etc.
 Initialize()
}

onLoad: Called when an existing data-element is loaded in Viz Pilot Edge. The normal steps are to initiate/
refresh data each time you open a data-element.

Example:

vizrt.onLoad = () => {
 // For example reset or refresh values, etc.
 ResetForm()
}

4.8.3 Jump to Preview Point
To refresh the preview, or jump to a specified preview point in the current graphics, use the
vizrt.jumpToPreviewPoint method with a named preview point as a parameter to the method. Sending an empty
string, jumps to the default preview point in the scene.

vizrt.onClick = (name: string) => {
 if (name === "jump2") {
 console.log("jumping to preview point 2")
 vizrt.jumpToPreviewPoint("pilot2")

Note: This event is not triggered when creating a new data-element from an existing one.

Note: This event can potentially modify the data-element when opening, which means it must be saved
before being draggable/sendable to a NRCS.

Info: These events must be defined in the Template Builder's script, but they are not triggered in Template
Builder.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 106

 }
}

4.8.4 Temporary Storage
In some scenarios, temporary storage beyond standard script variables, is useful. This storage functions similarly to
a field in the model and can be referenced as a source in a Dynamic Drop-Down.

Using vizrt.$data

A special object, vizrt.$data , is available in scripting. This object acts as a key-value map where you can freely
define your own keys (the values must be strings).

vizrt.$data.mykey = "myvalue"

In this example, the key mykey is assigned the value "myvalue" .

Dynamic Drop-Down Integration

You can use a key in the $data object as a source for Dynamic drop-down, for instance $data.mykey , replacing
the use of a traditional model field. The source data is not stored in the payload.

vizrt.$data.mykey = "[{"label": "Tottenham Hotspur", "value": "tottenham"}, {"label":
"Liverpool", "value": "liverpool"}, {"label": "Manchester City", "value": "mancity"}]
"

See also Dynamic Drop-Down.

4.8.5 Field Access
When using the scripting tool in the template, the individual fields must be accessed through the global name
space vizrt.fields (for example, vizrt.fields.$singleline.value).

The script executes when a graphic element is opened or created with the scripted template in Viz Pilot Edge.

Note: Writing $singleline.value instead of vizrt.fields.$singleline.value does not work, and gives a Compile
Error.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 107

•

•

•

•

•

In Template Builder, the script is also re-loaded and restarted when there are changes made to it.

By typing vizrt.fields, the editor's autocomplete shows you the available fields to choose from.

You can read and write field values, as well as react to value changes from outside the script, and access the
properties error, hidden, readOnly and tip of the vizrt fields.

onChanged: A property on fields that you can set as a function, and if you do so, this function is called
whenever the value of the fields changes, and gets the new value as an argument . If this is not set, it is null.

readOnly: Read and write boolean access, to whether the field should be editable in the form or not. If
false , the field and its input elements are editable in the UI. If true , they are read-only and greyed out in the
UI, but are accessible, saved and loaded as part of the payload.
hidden: Read and write boolean access, to whether the field should be editable in the form or not. If false ,
the field and its input elements are present and visible in the UI. If true , they are hidden from the UI but are
accessible, saved and loaded as part of the payload.
error: Read and write string access, to an error to display for this field. It overrides other error messages
associated with the field when non-empty (e.g. errors due to input length or regex constraints specified in
the field definition).
tip: Read and write string access, to a tip to use for this field. It overrides the tip specified in the field
definition when non-empty.

Typescript lets you access fields using known names (for example, vizrt.fields["$field_2"]), but does not allow
expressing the field names using variables (for example, vizrt.fields["$field_" + num]), as it is unable to determine
whether the field name is valid and what type the field is.

Note: Changes done to field values by the template script do not trigger the onChanged function to be
called.

Note: Dashes cannot be used in Typescript with the dot syntax, instead you can use vizrt.fields["$01-week"]
syntax to be able to access it.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 108

This must be used, for instance, when addressing the layers in a Transition Logic combo template, such as:
vizrt.fields["$-vizlayer-TL_FS"] .

To overcome this, the type checking associated with vizrt.fields can be locally ignored by using the any type. You
may do so inline using for example (vizrt.fields as any)["$field_" + num], or storing it as a new variable, as shown in
the example below.

Accessing Concepts & Variants from Scripting
To access the information from concept and variants fields, because they contain dashes, you must use square
brackets, as shown in the example below.

//When the Concept is changed, get its value and put it in a text field with field
name info1
vizrt.fields["$-concept-variant-choice"].$concept.onChanged = () =>
{vizrt.fields.$info1.value = vizrt.fields["$-concept-variant-choice"].
$concept.value }

//When the Variant is changed, get the value and put it in a text field with field
name info2
vizrt.fields["$-concept-variant-choice"].$variant.onChanged = () =>
{vizrt.fields.$info2.value = vizrt.fields["$-concept-variant-choice"].
$variant.value }

Note: Be aware that when using an object cast to any, the script editor isn't able to help you catch errors
like setting a boolean value to a string field, or even trying to access a field that does not exist..

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 109

External Sources
Whether on template load, or as a reaction to a field change, you can initiate HTTP, HTTPS or REST calls to fetch
values from third party or external services.

This can easily be done via the browser's built-in fetch API: https://developer.mozilla.org/en-US/docs/Web/API/
Fetch_API.

Image Metadata
Every image has some amount of metadata attached to it, and with this field you are able to access this metadata
by using the script editor.

You can upload images and the corresponding metadata to asset source servers. By accessing an image's
metadata, you can auto-fill the name field within a template or alternatively display or hide an image that might be
copyrighted.

How to Use the Image Metadata
If you are using a newly created template, simply choose any image, and then query that image's metadata in the
script editor by querying the image's metadata map. With an existing template, which already contains an image
that was created before the 2.4 version of Template Builder and Pilot Edge, then simply click on the current image
and re-select it from the asset selector, or alternatively select another random image and then select back the
original one. Once this is done, you can proceed by querying the image's metadata map.

This example checks if imageName has a metadata key named test and then tries to get the value of that metadata
key. You can use the script syntax shown below:

let hasMetadataKey: boolean = vizrt.fields.$imageName.metadata.has("test") //true if
the metadata contains the key test
let metadataValue: string = vizrt.fields.$imageName.metadata.get("test") //it is set
to the value it has in the metadata, otherwise it is undefined

This code example reacts when a new image is selected. When the image2 field gets assigned a new image, it tries
to get the description from the metadata associated with the new image, and set it into the text field img2_txt. If the
description does not exist, a message displays explaining it was not found.

vizrt.fields.$image2.onChanged = () => {
 if (vizrt.fields.$image2.metadata != undefined) {
 let keyName = "description"
 let a = vizrt.fields.$image2.metadata.get(keyName) // get the metadata value
that has the given key

Info: See the Quick Start Examples section for a short example of a REST call triggered by an onChanged
event.

Note: Image scripting metadata currently works for images retrieved from the following asset source
servers: Vizone, Vos, GH and OMS.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 110

 if (a != undefined) {
 vizrt.fields.$img2_txt.value = a // if the value is not undefined, then
set it into a string field within the template
 } else {
 vizrt.fields.$img2_txt.value = "The key '" + keyName + "' was not found
inside the metadata map"
 // Alternatively, set it to nothing: vizrt.fields.$img2_txt.value = ""
 }
 }
}

To access the entire unprocessed/unparsed metadata file, use wholeMetadataString. This can be useful for
debugging, or for finding the keys available in the metadata:

let rawMetadata:string = vizrt.fields.$imageName.metadata.get("wholeMetadataString")

Image Metadata XML

An image's metadata is stored within asset source servers in XML format, and the XML metadata structure should
follow a simple field-value (key-value) structure. This is to guarantee that all the metadata is correctly mapped and
made accessible through the script editor.
However, since many image metadata XMLs are disorderly, a parser has been created to handle most XML
structures, although this has some consequences that should be made aware of. All these example scripts are
based on an image field named "image1".

Empty field-value pairs get added accordingly:

<field name="car"/>
<field name="color">
 <value/>
</field>

// Accessing these can be done using:

let a = vizrt.fields.$image1.metadata.get("car")
let b = vizrt.fields.$image1.metadata.get("color")

// Both a and b will be ""

Nested structures get stored based on their hierarchy, with "/" being the parent-child separator:

<field name="access-rights">
 <field name="user-rights">
 <value>true</value>
 </field>
</field>

// To access the user-rights value:

let a = vizrt.fields.$image1.metadata.get("access-rights/user-rights")

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 111

•
•
•
•
•

// a will then be set to true.

Any fields with duplicate names get assigned a unique name with an incrementing suffix:

<field name="file-link-id">
 <value>id123</value>
</field>
<field name="file-link-id">
 <value>id456</value>
</field>
<field name="file-link-id">
 <value>id789</value>
</field>

Access duplicate names like this using the incrementing suffix:

let a = vizrt.fields.$image1.metadata.get("file-link-id")
let b = vizrt.fields.$image1.metadata.get("file-link-id(2)")
let c = vizrt.fields.$image1.metadata.get("file-link-id(3)")

a will be "id123"
b will be "id456"
c will be "id789"

Read Only Fields
Some fields are currently supported only for read-access by the scripting API. These are the following:

Duplet
Triplet
Map
Image
Video

For the Image and Video fields, the script is able to access some properties (their height, width, etc.) from the file.

The following example shows how to retrieve the image height:

vizrt.fields.$ImageInfo.value = "No image info";

vizrt.fields.$image.onChanged =() => {
 vizrt.fields.$ImageInfo.value = 'Image changed';

 var v = vizrt.fields.$image.value;
 if(v != undefined && v.height != undefined)
 vizrt.fields.$ImageInfo.value = v.height.toString();
 else
 vizrt.fields.$ImageInfo.value = "No image info";

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 112

}

Unsupported Fields
As of now, all List and Table fields are unavailable from the scripting API.

Note: Because images and videos can be undefined, they must be checked before they are used.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 113

•
•
•

•
•
•
•

•

•

4.8.6 The Script Editor
The internal script editor in Template Builder is built on top of the Monaco Editor, the same open-source editor that
powers Visual Studio Code. It offers a powerful and efficient development experience with many built-in features
that help you write and manage scripts effectively.

This page outlines the general editor features available in the script editor.

Core Editor Features
Context Menu
Keyboard Shortcuts

Core Editor Features

Syntax Highlighting for TypeScript/JavaScript.
IntelliSense for code suggestions, autocompletion, and tooltips.
Real-Time Error Checking based on syntax and type inference.
Bracket Matching highlights matching brackets and braces, helping you keep track of blocks of code and
function definitions.
Code Folding collapses or expands code blocks using the small arrows in the margin, making it easier to
navigate large scripts.
Multi-Cursor Editing by holding Alt and clicking to place multiple cursors.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 114

•
•
•
•

•
•
•
•
•
•

Context Menu

Right-click anywhere in the editor to open the context menu. This provides access to many common actions and
code navigation tools:

Go to Definition: Jumps to where a function or variable is defined.
Go to References: Finds all usages of the selected symbol.
Go to Symbol... Opens a list of all functions and variables in the file, allowing quick navigation.
Peek: A submenu that lets you preview definitions and references inline without leaving your current
position.
Rename Symbol: Renames a symbol across the script, updating all references automatically.
Change All Occurrences: Selects and edits all occurrences of the current word or variable at once.
Format Document: Re-formats the entire script based on consistent style rules.
Format Selection: Formats only the selected lines.
Cut / Copy / Paste: Standard editing options to manipulate code.
Command Palette: Opens a searchable list of all available commands in the editor.

Keyboard Shortcuts
Here are some of the most useful Monaco Editor shortcuts that work inside Template Builder:

Shortcut Action

Ctrl + Shift + O Open a searchable list of functions, variables, and other

symbols in the document. By typing : the symbols are

grouped by category.

Ctrl + Space Trigger suggestion/autocomplete

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 115

Shortcut Action

F12 Go to Definition

Alt + F12 Peek Definition

Shift + F12 Find All References

F2 Rename Symbol

Ctrl + F Search (and replace)

F1 Open Command Palette

Alt + Up / Alt + Down Move line up/down

Ctrl + Shift + K Delete line

Ctrl + Z / Ctrl + Y Undo / Redo

Shift + Alt + F Format the document

Ctrl + K, F Format the selected text

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 116

•
•

•
•

•
•
•

4.8.7 Quick Start Examples
In this section you can find short examples of how to use the scripting functionality.

Automatically Clear Title Field
Fetch Title from REST Service

In Viz Artist, create and save a regular Viz Pilot template scene with two text control fields:

name
title

Make sure to uncheck Use formatted text in the Control Text properties for both fields, which is easier to work
with.

Automatically Clear Title Field
In this example, the following basic features are shown:

Script that executes on template load.
Reacting to user changes to the fields.
Modifying fields from the script.

•
•

Info: For API test endpoints, please use the following:
GET HTTP://<PDS-HOST>:8177/testing/fakepremierleague/
GET HTTP://<PDS-HOST>:8177testing/fakepersonsearch/{name}

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 117

1.

2.
3.

4.

5.

Create a new template based on this in Template Builder, by choosing Create a new template and adding
your newly created scene via Add Scene.
Go to the Fill-in form tab.
In the scripting tab, you can verify that the template fields are available by typing vizrt.fields and looking at
the autocompletion.
Enter the following in the upper right script panel:

This script causes the template to hide the title field when the template loads. You should see this change
applied immediately on the payload editor preview:

The script is now extended to react to changes made in name. When name is empty, title should be hidden
and empty, but not otherwise:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 118

6.

•
•

The title field is now hidden and cleared when name is cleared, and reappears when something is entered
into name.
Save the template and observe this action in the Viz Pilot Edge client.

Fetch Title from REST Service
In this example, the script automatically fills the title field by fetching it from a REST endpoint.

This illustrates more advanced features:

Using the standard browser fetch API.
Changing field values based on responses from other services.

Using the same template as the example above, or creating a new one from the same scene, delete anything in the
script tab and write the following:

Note: Fields with dashes in their name, cannot be used in Typescript with the dot syntax, instead you can
use vizrt.fields["$01-week"] to be able to access it. This means, when creating a new scene, you should use
camel case notation or underscore (for example, 01thisIsMyField or 01_week), to access the field with the
dot syntax.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 119

Replace HOSTNAME with your own PDS host name. If everything is working correctly, you should see an
autogenerated title appear when you set or change the name field.

In this case, a specially provided test endpoint was used on the Pilot Data Server, but you can point to any other
REST resource. Also, you are not constrained to the fetch API used. All standard JavaScript network mechanisms
can be used.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 120

•
•

•
•

•
•
•

•

5 Action Panels
Action Panels are regular Viz Pilot Edge templates or data elements, but are designed to remain open in the client
and function as control surfaces. In Viz Pilot Edge, add the URL parameter &action to open the template in action
mode. This page walks through a practical approach to building an action panel template to control a typical clock-
and-score panel.

This page contains the following topics:

Key Concepts
UI Design with HTML Fragments

Enable User Interaction
Internal Scripting

Trigger a Media Sequencer (MSE) Command
Send Viz Engine Commands
Display a Message to the User

Host the Action Panel

Like all templates in Template Builder, Action Panels require an imported scene. However, if the panel's actions are
not directly tied to the scene content, the scene can be a dummy scene containing only a ControlObject plugin.

When an Action Panel is created and a scene is imported, Template Builder automatically generates input fields for
the controllable objects defined in the scene. These fields can then be used to drive scene playback from the
template. For example, in a clock and score panel, you might expose the home and away team names as text
fields. When this template is opened in Viz Pilot Edge, users can enter team names and save the template as a data
element for a specific match. This way, action panels can be prefilled and reused with specific content.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 121

•
•
•

•

•
•

•

•

•
•
•

It is important to emphasize that Action Panels are regular templates and data elements (all standard
mechanisms to build templates in Template Builder apply).

See the section Working with Templates for details on template creation and editing.

5.1 Key Concepts
Template Builder provides several mechanisms that are especially useful when building an action panel template:

HTML fragments inside the template allow fully customized panel layouts:
Style the content using standard CSS.
Use <button> elements with the vizrt-click-name attribute to define click-event handlers
in internal scripting.
Use HTML form controls such as <input> and <select> with the vizrt-input-name
attribute to enable two-way binding between control values in the HTML fragment, and
corresponding fields in the template or the vizrt.$data map used in internal scripting.

Internal script commands let you perform common actions programmatically:
Media Sequencer operations: app.createMseConnection(...) creates a Media Sequencer

object and lets you execute Media Sequencer commands such as "take" , "continue" ,

"update" , or "out" for the current template or data element.

Viz commands: mse.sendVizCommand(...) sends Viz Engine commands (through Media
Sequencer), such as setting shared memory variables, starting directors, or loading and updating
scenes.
User notifications: app.notify(...) displays a warning, error, or info message to the user.

5.2 UI Design with HTML Fragments
The user interface of an action panel template can be built just like any ordinary template. However, a particularly
powerful technique is using HTML fragments to customize the layout. In fact, the entire UI can be constructed
within a single HTML fragment.

To get started:

Add a new tab in your template.
Add an HTML fragment to this tab and resize it to the desired size.
Use CSS for layout and visual styling, either inline or inside a <style> tag within the fragment.

Note: To host action panel templates or data elements in your own client, add the &action URL parameter
to the Viz Pilot Edge URL.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 122

5.2.1 Enable User Interaction
There are two key mechanisms that enable interaction in the Action Panel UI:

1. Buttons

You can add <button> elements inside the HTML fragment to trigger scripted actions. Use the special attribute

vizrt-click-name to identify which action should be triggered when a button is clicked.

<button vizrt-click-name="take">IN</button>

In your internal script, the vizrt.onClick(name) handler receives the value of vizrt-click-name and
can react accordingly:

vizrt.onClick = (name: string) => {
 switch(name) {
 case "take":
 mse.take(playoutTarget)
 break
 // more cases...
 }
}

Use case: You want the panel operator to manually trigger a "take" playout with a single button click.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 123

•
•

2. HTML Form Controls with Bindings

To capture input from the user, use standard HTML form controls like <input> and <select> . These
elements can be two-way bound to either:

A template field (linked to a control object in the scene).
A field in the vizrt.$data map (used in internal scripting).

Use the vizrt-input-name attribute to bind the control:

Example 1 - Bind to Field

<input vizrt-input-name="title" type="text" value="MATCH DAY">

This binds the value of the input box to the field “title” in the template.

Example 2 - Bind to Scripting

<input vizrt-input-name="$data.home_score" type="number" value="0">

This example shows an input box where the user can type a numeric value, a two-way value bound to the value of
the given key in the $data map in internal scripting: vizrt.$data.home_score . This variable can also be
manipulated in the script, for instance increasing the score with 1, the new value is shown in the corresponding
HTML form control.

5.3 Internal Scripting
Once the UI is in place, internal scripting provides the logic to execute actions in response to user input.

5.3.1 Trigger a Media Sequencer (MSE) Command
To create an object to perform Media Sequencer operations, use:

const mse: MseConnection = app.createMseConnection(mseUrl);

Creating the object with an URL as parameter does not automatically connect to Media Sequencer. The object uses
the Media Sequencer REST API, and does not have callback events.

The first operation to execute after creating this object, is to check whether the connection is valid. To do this, you
may create a function:

Use case: You want the operator to input or adjust values like team names, scores, or time values, which
the script can then access or modify.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 124

•

•

•

// Verifying that the Media Sequencer connection is okay.
async function verifyConnection() : Promise<boolean> {
 return await mse.checkConnection();
}

And call it as such:

if (!(await verifyConnection())) {
 app.notify("error", "Cannot connect to the Media Sequencer.");
}

If this operation returns true, you are ready to trigger playout commands on the current template or data element.

All commands have a PlayoutTarget object as a parameter. This object has the following members:

profile : The MSE profile to use.

channel : The channel to play out on.

layer (optional): Viz layer (one of, "MAIN" , "BACK" , "FRONT").

// Creating a default playout target.
const defaultPlayoutTarget: PlayoutTarget<VizLayer> = {
 profile: "default",
 channel: "A",
 layer: "MAIN"
};

Use Environment Variables from URL Parameters
In the example above, the playout target and Media Sequencer URL is hard coded in scripting. These values can also
be provided from environment variables specified in the Viz Pilot Edge URL parameters, for instance:

http://pds-host:8177/app/pilotedge/pilotedge.html?template=28935&$mse=http://

custom-mse-host:8580/&$profile=myprofile1&$channel=B&action

URL parameters starting with a dollar sign are treated as an environment variable. In scripting, the environment
variables can be accessed through the vizrt.$env dictionary:

// Creating a Media Sequencer object to use for communication. Picking up the
// URL from the "$mse" URL parameter or using a default one.
const mseUrl = vizrt.$env.mse ?? "http://default-mse-host:8580/";
const mse: MseConnection = app.createMseConnection(mseUrl);

Note: These $ -prefixed parameters are only parsed by Viz Pilot Edge and Template Builder, and are not
treated as regular query parameters in HTTP requests.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 125

•

•

// Creating the playout target to use, based on URL parameters or the default target
above.
const playoutTarget: PlayoutTarget<VizLayer> = {
 profile: vizrt.$env.profile ?? defaultPlayoutTarget.profile,
 channel: vizrt.$env.channel ?? defaultPlayoutTarget.channel,
};

5.3.2 Send Viz Engine Commands
To send commands directly to Viz Engine (for example, set shared memory, update scenes), use
mse.sendVizCommand (playoutTarget, commands) . Commands is an array of strings containing the

Viz Engine commands to send. The PlayoutTarget parameter is described above.

The commands array contains Viz command strings.

function sendVizCommands(commands: string[]) {
 mse.sendVizCommand({
 profile: playoutTarget.profile,
 channel: playoutTarget.channel
 // layer is intentionally omitted
 }, ...commands)
}

function updateAwayScore() {
 sendVizCommands(["GLOBAL*MAP SET_STRING_ELEMENT Soccer_AwayTeamScore " + vizrt.
$data.away_score])
}

5.3.3 Display a Message to the User
Use app.notify(...) to show non-blocking notifications (toast messages) in the UI:

app.notify("success", "Connected to the Media Sequencer. Good to go!");

severity : “success", "info" , "warning" , or "error" .

message : The text to display.

Note: When using mse.sendVizCommand(...) , you must not include the layer property in the

PlayoutTarget . If you do, Template Builder raises a compile-time error, because the layer must be
specified explicitly in the command strings, not in the target.

Use case: You want to update a scene’s data or trigger a director without playing out a new template.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 126

5.4 Host the Action Panel
The Action Panel template can be tested from Template Builder and Viz Pilot Edge. When hosted in Viz Pilot Edge or
custom web clients that embed Viz Pilot Edge, the template can be shown in "action mode" using the &action

parameter, displaying only the Action Panel interface. This can be done by adding the URL parameter &action to
the Viz Pilot Edge URL.

http://pds-host:8177/app/pilotedge/pilotedge.html?template=28580&action

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 127

6 Multiplay Presets
Template Builder supports importing Viz Multiplay preset scenes, that typically use the Viz Artist Preset plugin to
define layout presets with superchannels. Each preset contains a layout with up to 16 superchannels. When
imported into Template Builder, a preset template is created. The fill-in form displays a dropdown menu to select
among the available presets (layouts), along with an editor for each superchannel in the selected preset.

6.1 Creating a Preset Template
A Preset Template is based on a Viz Artist scene that includes the Preset plugin. This plugin can be manually added
in Viz Artist, where presets can also be created, edited and removed. However, a more convenient workflow is to
use Viz Multiplay, which includes a Video Wall Designer with intuitive drag-and-drop functionality to design layouts
visually.

When a preset scene is saved in Viz Multiplay, it generates a Viz Artist scene containing all preset data (such as the
dimensions and positions of superchannels, and a name for each preset). This scene is then published to Graphic
Hub, from where Template Builder can import it into any existing concept, using the standard Pilot workflow. The
result is a regular Viz Pilot Edge template.

6.2 Adding Default Content to Channels
Each superchannel can be filled with default content such as graphics, images, videos, live channels, or an "out"
action to clear the channel. Leaving a superchannel empty is interpreted as "ignore", meaning the current content
in the channel remains unchanged.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 128

•

•
•
•

•

Each superchannel field in the template includes the following options:

Graphics: Select graphics to display in the channel. This can be either an existing data element or a
template that needs to be filled out.
Images: Browse and select an image to display. The image can be cropped with the image editor.
Videos: Browse and select a video clip to be played in the channel.
Live: Select a live input source. The actual content depends on how input channels are configured on the Viz
Engine playout machine.
Out: Clears the channel by taking the current content out.

6.3 Saving a Preset Template
When a preset template is saved, the currently selected layout preset and the default content for each
superchannel are stored in the template. This defines the default state when the template is opened in Viz Pilot
Edge.

Preset templates are standard Viz Pilot Edge templates and can belong to any concept. To control their visibility in
the client, tags can be applied to the templates and used in combination with the Pilot Collections feature, which
allows templates to be shown or hidden based on tags.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 129

•
•
•
•

•
•
•
•
•

1.

7 Viz Mosart Timing Information
The Viz Mosart Timing Panel is now integrated directly into Viz Pilot Edge, eliminating the need to embed the timing
UI within individual templates.

Historically, Viz Mosart timing information was stored directly within data elements, meaning each element had a
fixed timing configuration. With the introduction of the Viz Mosart Timing Information mechanism, timing is now
transmitted only via the generated MOS XML. This change delegates the lifetime and ownership of the timing data
to the newsroom system, enabling one data element to be reused with varying in/out points in different rundowns.

This section contains the following topics:

Configuration
MOS XML
Customization through Scripting
Examples

Limit Destinations per Template
Filter Destinations
Enabling only Full Screen
Conditionally Show "Is Locator"
Set Default Timing Values

7.1 Configuration
The Viz Pilot backend must be aware of available Viz Mosart destinations. These must be configured manually via
Template Builder:

Open Viz Mosart Configuration from the Template Builder tools menu.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 130

2.

3.
•
•

Add Viz Mosart destinations to match your Viz Mosart system.

Enable the timing panel using:
Use Viz Mosart Timing Panel: Displays the panel at the bottom of regular Viz Pilot Edge templates.
Use "Is Locator": Includes a checkbox in the timing panel to set the "Locator" flag.

Note: One default destination called [FULL] is represented internally as an empty string (""). This
indicates the graphic is a primary full-screen event, not a secondary event, and therefore cannot have
timing information in a Viz Mosart system.

Info: In Viz Mosart, a Locator is a graphic linked to a video switcher crosspoint. Taking the crosspoint (as a
switcher or keyed crosspoint) also takes the graphic.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 131

•
•

When the configuration is saved, the Viz Mosart Timing Panel becomes visible in all applicable Viz Pilot Edge
templates.

7.2 MOS XML
When Viz Mosart Timing Panel is enabled, timing data is not stored in the data element but included in a
mosExternalMetadata block within the generated MOS XML:

<mosExternalMetadata>
 <mosScope>PLAYLIST</mosScope>
 <mosSchema><http://www.vizrt.com/mosObj/mosart</mosSchema>>
 <mosPayload>
 <channel>DSK1</channel>
 <start>00:10</start>
 <duration>00:05</duration>
 <inMode>auto</inMode>
 <outMode>auto</outMode>
 <isLocator>false</isLocator>
 </mosPayload>
</mosExternalMetadata>

Notes:

Timing information is not persisted in the data element itself.
The newsroom system retains control over timing.

Note: The [FULL] entry is mandatory. It results in an empty <channel> field in the MOS XML and disallows
timing, as full-screen graphics are treated as primary events.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 132

•

•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•

•
•

Older mechanisms (for example, storing timing in the mosart field or description) remain supported.

7.3 Customization through Scripting
You can use scripting to tailor the behavior of the timing panel, per template. The following objects are accessible:

$pilot.mosartConfig (read-only): Structure containing the Viz Mosart configuration in the database settings.
.destinations[] (list of strings): List of configured Viz Mosart destinations.
.showTimingPanel (boolean | undefined): Whether to show the panel.
.showIsLocator (boolean | undefined): Whether the “is Locator” checkbox is shown or not in the Viz
Mosart timing panel.

$pilot.mosartTimingPanel
.destinations [] (list of strings): Overrides available destinations per template.
.showIsLocator (boolean): Overrides the global "Is Locator" setting.
.showContinueCount (boolean): Show/hide "Continue Count" input.
.expanded (boolean): Expand/collapse the panel by default (default: true).

$pilot.mos
.mosart

.channel (string): Destination channel.

.start (string): Start time.
duration (string): Duration.
inMode (InMode): Can be set to "auto" or "manual".
outMode (OutMode): Graphics outMode can be set to "auto", "story-end", "background-end"
or "open-end".
isLocator (boolean): Indicates whether this graphics should be treated as a locator.

.continueCount (number | undefined): Optional override for the current data element.

7.4 Examples

7.4.1 Limit Destinations per Template
Only allows a specific set of destinations for a given template:

// When a new data element is created, we set the default destinations of the Mosart
// timing panel and the default value to be selected. We need to check whether these
// objects are defined. They may be undefined if configured to not be used, or no
// Mosart configuration is added to the Pilot system.
vizrt.onCreate = () => {
 if (vizrt.$pilot.mosartTimingPanel && vizrt.$pilot.mos.mosart) {
 vizrt.$pilot.mosartTimingPanel.destinations = ["LOWER", "DSK"];
 vizrt.$pilot.mos.mosart.channel = "LOWER";
 }

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 133

}

7.4.2 Filter Destinations
Excludes destinations that begin with "WALL":

if (vizrt.$pilot.mosartTimingPanel && vizrt.$pilot.mos.mosart && vizrt.
$pilot.mosartConfig) {
 vizrt.$pilot.mosartTimingPanel.destinations = vizrt.
$pilot.mosartConfig.destinations.filter(
 (destination: string) => !destination.startsWith("WALL"));
 }
}

7.4.3 Enabling only Full Screen
Only use the [FULL] destination (represented by an empty string):

// Empty channel is treated as the full screen destination in Viz Mosart.
vizrt.onCreate = () => {
 if (vizrt.$pilot.mosartTimingPanel && vizrt.$pilot.mos.mosart) {
 vizrt.$pilot.mosartTimingPanel.destinations = [""];
 vizrt.$pilot.mos.mosart.channel = "";
 }
}

7.4.4 Conditionally Show "Is Locator"
Enable the "Is Locator" checkbox, only in specific templates:

vizrt.onCreate = () => {
 if (vizrt.$pilot.mosartTimingPanel) {
 vizrt.$pilot.mosartTimingPanel.showIsLocator = true;
 }
};

7.4.5 Set Default Timing Values
Prepopulate the timing fields:

vizrt.onCreate = () => {
 // Setting initial timing values
 if (vizrt.$pilot.mos.mosart) {

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 134

 vizrt.$pilot.mos.mosart.start = "00:12";
 vizrt.$pilot.mos.mosart.inMode = "auto";
 vizrt.$pilot.mos.mosart.outMode = "story-end";
 vizrt.$pilot.mos.mosart.channel = "DSK";
 }

 // Overriding the continue count of the scene
 if (vizrt.$pilot.mosartTimingPanel) {
 vizrt.$pilot.mosartTimingPanel.showContinueCount = true;
 vizrt.$pilot.mos.continueCount = 3;
 }
};

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 135

•
•
•
•
•
•

8 Troubleshoot
A list of known issues and their fixes are listed below.

Create New Button Not Displayed on UI
GH Scenes Tree Not Displayed when Pressing Create New
An Error Message is Shown when attempting to Open a Scene
Preview Server Error Message Shown when trying to Open a Scene
Scene Blocked due to Outdated or Empty Geom
Support

8.1 Create New Button Not Displayed on UI
An outdated PDS version (<8.5) is installed. Install version 8.5 or above. Preview Server must also be updated to
4.4.1 or above.

8.2 GH Scenes Tree Not Displayed when Pressing Create New
Make sure that http://<PDS server>:8177/app/DataServerConfig/DataServerConfig.html

→ graphic_hub_url is properly set.

8.3 An Error Message is Shown when attempting to Open a Scene
An outdated GH REST version (<3.4.2) is installed. Install version 3.4.2 or later.

8.4 Preview Server Error Message Shown when trying to Open a Scene
Check that the http://<PDS server>:8177/app/DataServerConfig/DataServerConfig.html → preview_server_uri
property is set.

8.5 Scene Blocked due to Outdated or Empty Geom
If the Geom of a scene is outdated or empty when creating a transition logic template, Template Builder blocks the
use of the scene.
To fix this, save or update the scene in Viz Artist > 4.2.

Note: Pilot Data Server version 8.6 is mandatory for Transition Logic support.

Important: The feature below must be enabled in the Viz Artist config file.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 136

Enable automatic creation of merged geometries when saving a transition logic scene:
AutoExportTransitionLogicGeometries = 1.

See the Viz Artist User Guide for more information on editing the Viz Artist config file.

8.6 Support
Support is available at the Vizrt Support Portal.

http://docs.vizrt.com/viz-artist.html
https://community.vizrt.com/

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 137

•
•
•
•
•

9 Additional Information
The appendix contains the following pages:

Keyboard Shortcuts
Overview of Media Types
Transition Logic and Combo Templates
Previewing Content
Overview of Control Plugins

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 138

9.1 Keyboard Shortcuts
This page lists available keyboard shortcuts in Template Builder.

Shortcut Description

CTRL + O Open the Open Template dialog where you can select a template to open.

CTRL + S Save a template.

CTRL + Z Undo.

CTRL + Y Redo.

9.1.1 Graphics Preview Player Shortcuts
Use the following shortcuts for the Graphics Preview player:

Shortcut Description

SPACE or CTRL + SPACE Play/pause.

SHIFT + I Go to the in-point.

SHIFT + O Go to the out-point.

, (comma) Move one frame back.

. (period) Move one frame forward.

Warning: The shortcut CTRL + O does not work properly in Firefox version 65.0.1 and later.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 139

9.2 Overview of Media Types
The following media types are available for single value fields in Template Builder (click the links for W3C
definitions):

Type Media Type (XSD
type)

Content of field/value element

Multi-line text text/plain (string) text

Single-line text text/plain
(normalizedString)

text

Formatted text application/
vnd.vizrt.richtext+xm
l

XML (accepts plain text if unformatted)

Boolean text/plain (boolean) text (true or false)

Integer text/plain (integer) text (for example, -42)

Decimal text/plain (decimal) text using period as decimal point (for

example, 123.456)

Date and time text/plain (dateTime) text (for example, 2021-04-06T13:35:00Z)

Date text/plain (date) text (for example, 2021-04-14)

Two numbers
(duplet)

application/
vnd.vizrt.duplet

text containing two decimal numbers

separated by a space (for example, 0.6 0.8)

Three numbers
(triplet)

application/
vnd.vizrt.triplet

text containing three decimal numbers

separated by spaces (for example, 3 4.5 5)

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#normalizedString
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#decimal

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 140

Type Media Type (XSD
type)

Content of field/value element

Image application/
atom+xml;
type=entry;media=im
age

The image path on GH (for

example, IMAGE*images/flags/denmark)

Geometry application/
vnd.vizrt.viz.geom

The geometry path on GH (for

example, GEOM*objects/my-geom)

Material application/
vnd.vizrt.viz.material

The material path on GH (for

example, MATERIAL*objects/my-

material)

Map application/
vnd.vizrt.curious.ma
p

Proprietary format

Color text/vnd.vizrt.color text (for example, #140E7E or rgba(255, 0, 0,
1)).

https://tools.ietf.org/html/rfc4287#section-4.1.2

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 141

•
•

•
•
•
•

•
•

9.3 Transition Logic and Combo Templates
This section covers transition logic and combo templates, and contains the following topics:

What is Transition Logic (TL)?
How does TL Work?

Master Scenes
Object Scenes
Combo Templates
TL Terminology

Working with Transition Logic and Combo Templates
Creating a New Combo Template

9.3.1 What is Transition Logic (TL)?
Transition Logic (TL) is a way of designing a graphics package that lets you maintain the look and feel of the
graphics while letting journalists add graphics items to a rundown, without the need for technical knowledge. TL
lets you independently control any number of graphics layers, providing a code-free and design-based method to
build graphics that gracefully animate in and out, and transitions from one to another automatically.

9.3.2 How does TL Work?

Master Scenes
This is accomplished by using a Master Scene (aka Background Scene) that coordinates the animation of
independently controlled objects which make up the whole. The master scene commonly contains the background
items of the graphics package. Such items can be looping backgrounds or the design items of the lower third, over
the shoulders, and full-screen graphics. The variable or changing content, such as the text in a lower third, is stored
separately in Object Scenes.

Object Scenes
When a lower third is played On Air, the object scene for the lower third is triggered. This tells the engine to load the
master scene, place the object scene inside the master, and animate the timelines. TL handles all of this
automatically.

Combo Templates
These are templates that contain multiple layers of TL scenes.

Info: Transition Logic (TL) can be played out by most Vizrt control applications such as Viz Trio, Viz Pilot,
Viz Multiplay and Viz Multichannel.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 142

•
•

•

•

•

TL Terminology

Combo Templates: A TL template that contains more than one layer of scenes.
Master Scenes: A TL scene is not a single scene, but a set of Viz graphics scenes that consist of a master
scene that may have multiple layers of graphics that can be On Air at the same time and independently
controlled.
Object Scenes: Each layer in the master scene may have multiple referring object scenes. However, only one
object scene per layer can be active at any given time.
Layers: Layers in the transition logic scene define how many scenes can be on air at the same time. TL layers
are conceptual, not spatial.

9.3.3 Working with Transition Logic and Combo Templates
Follow the steps below to get started.

Creating a New Combo Template
Create a new template and add transition logic scenes. The following example use Blue and Green concepts.

Select scenes and click OK.

Note: With Transition Logic scene design, take in and take out commands are still used as with standalone
scene design. Where standalone scene design demands that only a single scene can be On Air at a time,
however, Transition Logic allows for more than one scene to be On Air simultaneously. This means that
using Transition Logic lets you have a graphic covering the lower third of the screen and another graphic
covering the left and/or right side of the screen for over the shoulder graphics On Air at the same time.

Note: Transition logic and combo templates require Viz Engine 4.3 or above.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 143

•

•

•

The new template contains transition logic and two layers, it is therefore, a combo template:

Right click the Default concept to replace it with a new one:

Click +Add Concept in the lower left corner of the screen. Enter a name for your new concept and click OK.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 144

•
•
•

Click the +Add Scene button.
Select the scenes with the same set of control objects as those you selected for the first concept.
In the Fill-in form, you can now see that the template contains two concepts and two layers.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 145

•

•
•
•
•
•

•

9.4 Previewing Content
The Graphics Preview window is located to the right of the interface. It displays snapshots of the final output in an
ongoing preview process, and provides an indication of how the graphics look when played out in high resolution
on a Viz Engine.

Preview points: If the scene contains named preview points, such as stop points and/or tags in the Default
director, these are displayed as a timeline on top of the preview. Small circles represent the preview points.
Download button: Downloads the current preview snapshot as a PNG file in HD resolution.
TA: Show/hide the Title Area.
SA: Show/hide the Safe Area.
K: Show the key signal for the graphics.
Refresh: Visible when auto refresh is disabled. Sends a preview request to Preview Server with the current
data. The request is unique, meaning that the preview server does not return a cached version of the
snapshot. Preview Server also checks whether the scene itself is updated in Viz Artist and returns the latest
saved version.
Auto-refresh: Enabled by default. Send a preview request for any user generated change that may lead to
the snapshot being changed.

Note: Template Builder sends requests to Preview Server which manages the Viz Engines that provide the
snapshots.

Info: Clicking on a preview point to request a preview sends a snapshot request with a named position to
Preview Server. Clicking on the timeline sends a snapshot request with an absolute position to Preview
Server. For more information, see the Preview Server REST API documentation.

http://docs.vizrt.com/preview-server.html

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 146

9.4.1 Viz Scene - OnPreview()
In the Viz Scene Script, you can use the OnPreview() function to customize the preview shown in Template Builder
and Viz Pilot Edge.
Here is a sample code for Viz Scene Script:

//If AlwaysRunPreviewScript is set to True in Preview Server, this will get the
hostname of the Viz Engine rendering the preview and sets the returned value in the
text container from JustForPreview->Hostname.
//It also sets the container visibility to True, thus revealing the hostname and
background image, but only in Preview.

sub OnPreview(active As Integer)
 FindContainer("JustForPreview$Hostname").Geometry.Text = "Hostname: "&
System.Hostname
 FindContainer("JustForPreview").active = true
end Sub

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 147

To enable this functionality in Preview Server, navigate to the location of the PreviewServer.exe.config and set the
value True for AlwaysRunPreviewScript:

You then have to restart the Preview Server Windows Service for this change to take effect. The preview now
displays the hostname of the Viz Engine:

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 148

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 149

9.5 Overview of Control Plugins

9.5.1 Supported Viz Artist Control Plugins

Plugin
Name

Comments

Control
Chart

The Control Chart plug-in exposes control of chart data from the Visual Data Tools
plugins.

Control
Text

From Viz Engine 5.0.1 and above, Control Text exposes text from both the Classic
and Viz Engine renderer pipeline.

Control
Geom

The Control Geom plug-in exposes the control of geometry objects to the user.

Control
Image

The Control Image plug-in creates an image control in the control clients.

Control
List

The Control List plug-in allows you to create table controls. Normally there should be
a Control Object for each row.

Control
Material

The Control Material plug-in exposes the material control to the user. Remember to
set up a search provider towards Graphic Hub, to use this.

Control
Number

The Control Number plug-in (also known as Control Num) is used to be able to
decide how a number input is to be formatted. It can be a value given by the control
client user or by any external source. It should be used instead of Control Text when
numbers are the input value.

Control
Object

Control Object should always be added to a scene when you add other control
plugins. It is in this plugin that you mark if a scene is part of a transition logic set or
not. There should normally only be one control object in the scene. The exception is
when you use a control list when there is a control object for every line.

Control
OMO

The Control Object Moving (Omo) plug-in gives you the possibility to add a group of
containers and reveal one at the time. This control plugin exposes an integer. It is
typically nice to use a drop-down for these with proper field names.

Control
Video

The Control Video plug-in exposes control over a video codec channel (ClipChannel).
Does not support clips in soft clip players.

Control
WoC

A replacement of the Control Maps plugin with more options and on-the-fly feedback
from Viz Artist/Engine.

Template Builder User Guide - 3.3

Copyright © 2025 Vizrt Page 150

Info: If a Control Plugin is not listed in the table above, it is not supported by Graphic Hub and/or Template
Builder.

	Overview
	Workflow
	Feedback and Suggestions
	Support

	Configuration
	Open Template Builder and Connect to Pilot Data Server
	Specifying Preview Server, Graphic Hub REST and Crop Server
	Open, Edit and Save Settings

	Monitoring Server Status

	Managing Templates
	See Also:
	Creating and Opening Templates
	Creating a Template
	Opening a Template

	Concept Manager
	Template Properties
	Template Properties
	Video Timeline Duration
	Update Service
	Concepts & Variants

	Template Compatibility
	Mixed Workflow
	HTML Based
	HTML Based Legacy Template

	Categories and Channels
	Pilot Collections
	Organizing Concepts, Templates and Tags
	Creating Pilot Collections
	Connecting Pilot Collections to Authentication

	Import and Export
	Exporting
	Importing

	Working with Templates
	Template Layout
	Creating a Template
	Adding Alternative Layout Forms

	Template Fields
	Field Tree
	Field Properties
	Field Types
	Data Entry
	Inline HTML Fragment
	Inline HTML Panel
	Hidden and Read-only Expressions

	Custom HTML Templates
	Use PayloadHosting with NPM
	Manually Include PayloadHosting in HTML
	Configure Custom HTML Pages and Panels
	Overview of Key Mechanisms
	Quick Start Code Samples

	Auto-generated Title
	Environment Variables
	Defining Environment Variables
	Using Environment Variables

	Custom Execution Logic
	Execution Logic Editor
	Working with Execution Logic

	Update Service
	Enabling Update Service in a Template
	Pilot Update Service with Javascript in Template Builder
	External Update Service

	Template Scripting
	Script Technology and Security
	Initialization
	Jump to Preview Point
	Temporary Storage
	Field Access
	The Script Editor
	Quick Start Examples

	Action Panels
	Key Concepts
	UI Design with HTML Fragments
	Enable User Interaction

	Internal Scripting
	Trigger a Media Sequencer (MSE) Command
	Send Viz Engine Commands
	Display a Message to the User

	Host the Action Panel

	Multiplay Presets
	Creating a Preset Template
	Adding Default Content to Channels
	Saving a Preset Template

	Viz Mosart Timing Information
	Configuration
	MOS XML
	Customization through Scripting
	Examples
	Limit Destinations per Template
	Filter Destinations
	Enabling only Full Screen
	Conditionally Show "Is Locator"
	Set Default Timing Values

	Troubleshoot
	Create New Button Not Displayed on UI
	GH Scenes Tree Not Displayed when Pressing Create New
	An Error Message is Shown when attempting to Open a Scene
	Preview Server Error Message Shown when trying to Open a Scene
	Scene Blocked due to Outdated or Empty Geom
	Support

	Additional Information
	Keyboard Shortcuts
	Graphics Preview Player Shortcuts

	Overview of Media Types
	Transition Logic and Combo Templates
	What is Transition Logic (TL)?
	How does TL Work?
	Working with Transition Logic and Combo Templates

	Previewing Content
	Viz Scene - OnPreview()

	Overview of Control Plugins
	Supported Viz Artist Control Plugins

