6 Server Configuration .. 18
 6.1 User Interface .. 19
 To connect to the server .. 20
 6.1.1 Template ... 21
 6.1.2 Locations .. 21
 6.1.3 Users ... 21
 6.1.4 License ... 22
 To manually add a license file ... 23
 To add a license file using the Maps Server Configuration tool 23
 To add a license file using Viz Curious Maps 23
 6.1.5 Maps .. 24
 Database ... 25
 Database Features .. 25
 Disputed Regions .. 26
 Default Projection .. 26
 Map Legend ... 27
 Locations ... 28
 User DEMs ... 28
 Attribution ... 29
 To position the attribution image .. 29
 Virtual Earth ... 29
 Digital Globe ... 30
 Display .. 30
 Street Admin .. 31
 6.1.6 Standalone Clients .. 31
 6.1.7 Symbols .. 32
 6.1.8 Timeouts ... 33
 6.1.9 Proxy Server ... 34
 6.1.10 Server Logging ... 34

7 Server Launcher ... 35
 7.1 Server Launcher Configuration ... 36
 7.1.1 Options ... 36
 Setting Priorities ... 37
 To add or remove instances .. 38
 To set the controlled instances .. 38
 7.2 Configuration Options ... 38
 7.2.1 Single Server Allocator Configuration .. 39
 7.2.2 Multiple Server Allocator Configuration: Classic Redundancy 39

8 Cache Configuration ... 40
 8.1 Cache Location .. 40
 8.2 Defining the Cache ... 41
 To activate the cache ... 41
8.3 Cache Folder Structure ... 42
 General Caching Rules .. 42
8.4 Control Applications and Caching ... 43
 8.4.1 Viz Trio .. 43
 Loading pages .. 43
 Initializing all pages ... 43
 Direct Take .. 44
 8.4.2 Viz Content Pilot ... 44
9 Viz World Client ... 45
 9.1 Installing the Client ... 45
 To install the client ... 45
 To install the server configuration tool 46
 To install the client in silent mode ... 46
 To record a silent mode installation .. 47
 To install the client in silent mode using an ISS file 48
 To remove the client ... 48
 9.2 Configuring Viz Engine ... 49
 To configure Viz Engine ... 49
10 Viz World Editor ... 51
 10.1 User Interface ... 51
 10.1.1 Map Area ... 52
 Zoom Options ... 52
 10.1.2 Navigation and Map Editing Area 52
 Using the Results .. 52
 10.1.3 Search Tab .. 53
 Search Parameters ... 53
 10.1.4 Explorer Tab ... 54
 Explorer Parameters (list filter) ... 54
 10.1.5 Extra Data Tab ... 55
 Streets ... 56
 Import KML ... 56
 10.1.6 Images Tab ... 57
 To add geo referenced images .. 57
 10.1.7 Symbols Tab ... 57
 To add symbols .. 58
 10.1.8 Map Tool Bar ... 58
 Map Tool Options ... 58
 To create a map using the Quick Map location browser 62
 To set the map location ... 62
 To pick a label and add it to the map 63
 10.1.9 Map Details Area ... 63
 Map Details parameters ... 63
 10.2 Using the Editor ... 64
11 Maps Plug-ins ... 70
 11.1 2D Label ... 72
 11.1.1 Plug-in Description ... 73
 Label .. 73
 Bevel ... 74
 Caption ... 75
 Special .. 77
 Fade ... 78
 11.2 3D Border ... 80
 11.2.1 Plug-in Description ... 80
 Data ... 81
 Width .. 82
 Outline ... 83
 Effect ... 84
 Advanced ... 84
 Rebuild ... 85
 11.3 3D Border Control .. 85
 11.3.1 Plug-in Description ... 86
 Control ... 86
 Width .. 87
 11.4 3D Border Manager ... 88
 11.4.1 Plug-in Description ... 89
 11.5 3D Line Shader .. 90
 11.6 3D Map Setting ... 90
 11.6.1 Plug-in Description ... 90
 General ... 91
 Border Data ... 91
 Window ... 92
 GUI ... 93
 11.7 3D Line ... 94
 11.7.1 Plug-in Description ... 96
 Width .. 96
 Outline ... 97
 Effect ... 98
 Control ... 98
 Advanced ... 99
 Rebuild ... 100
11.8 3D Line Control ..100
11.8.1 Plug-in Description .. 100
11.9 3D Line Manager ..101
11.9.1 Plug-in Description .. 102
11.10 3D Region ..103
11.10.1 Plug-in Description .. 103
 General ... 104
 Region ... 105
 Sub Regions .. 106
 Advanced .. 107
11.11 3D Region Control ..109
11.11.1 Plug-in Description .. 110
11.12 3D Region Manager ..112
11.12.1 Plug-in Description .. 113
11.13 3D Roads ...116
11.13.1 Plug-in Description .. 116
 Data ... 117
 Width ... 118
 Outline ... 119
11.14 3D Road Manager ...120
11.14.1 Plug-in Description .. 120
11.15 Atlas ..122
11.15.1 Plug-in Description .. 123
 General ... 123
 Advanced .. 124
11.16 Curious 3D Terrain ...125
11.16.1 Plug-in Description .. 125
 Terrain ... 125
 Pyramid ... 127
 Advanced .. 128
11.17 Curious 3D Terrain Shader ...128
11.18 Center Map ..129
11.18.1 Plug-in Description .. 129
11.19 Color Matrix ...130
11.19.1 Plug-in Description .. 130
11.20 CWM Client ..132
11.20.1 Plug-in Description .. 132
 Texture ... 133
 Labels .. 133
 3D Objects ... 135
 Miscellaneous ... 140
 CMR ... 142
11.21 Fade Texture ..142
11.21.1 Plug-in Description .. 143
Constant .. 143
Spline .. 144
Uniform ... 144
11.22 Flat MR ...144
11.23 Geolmage ...145
11.23.1 Plug-in Description ..145
11.24 Focus On Map ..147
11.24.1 Plug-in Description ..147
Position .. 148
Camera .. 149
Labels .. 149
11.25 Geo Text ..150
11.25.1 Plug-in Description ..150
11.26 Globe ...153
11.26.1 Plug-in Description ..153
11.27 Globe Zoom ..156
11.28 Hop Sync ..156
11.28.1 Plug-in Description ..156
11.29 Label It ...157
11.29.1 Plug-in Description ..157
Caption .. 158
Overlay .. 158
OnMap Scale .. 159
Fade .. 160
Practical Use .. 160
11.30 Label Manager ..162
11.30.1 Plug-in Description ..162
Map Data ... 163
Auto Labels .. 164
Definitions ... 165
Shadows .. 166
Common Buttons ... 167
11.31 Light On Globe ...167
11.31.1 Plug-in Description ..167
11.32 Locator Control ..170
11.32.1 Plug-in Description ..170
11.33 Map Builder ..172
11.33.1 Plug-in Description ..172
11.33.2 Map Builder Wizard ...174
Base Map ... 175
Navigation .. 175
Destination List ... 175
Designs .. 177
11.43 NavScale ...212
 11.43.1 Plug-in Description ..213
11.44 NavSlave ...213
 11.44.1 Plug-in Description ..214
11.45 Publish To Design ..214
 11.45.1 Plug-in Description ..214
11.46 Pyramid Control ..215
 11.46.1 Plug-in Description ..215
11.47 Screen Scale ..216
 11.47.1 Plug-in Description ..217
11.48 Shadow Agent ...218
 11.48.1 Plug-in Description ..218
11.49 Trace It ..218
 11.49.1 Plug-in Description ..219
 General ..219
 Camera ..220
 Advanced ...221
11.50 World Image Refresh ...221
 11.50.1 Plug-in Description ..222
11.51 World Position ...222
 11.51.1 Plug-in Description ..223

12 Geographically Referenced Maps ...224

13 Frequently Asked Questions ..225
Copyright © 2010 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed, stored in a retrieval system, translated into any language, computer language, or transmitted in any form or by any means, electronically, mechanically, magnetically, optically, chemically, photocopied, manually, or otherwise, without prior written permission from Vizrt.

Vizrt specifically retains title to all Vizrt software. This software is supplied under a license agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication "as is" without warranty of any kind, either expressed or implied.

This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the preparation of this document to ensure that it contains accurate and up-to-date information, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained in this document.

Vizrt’s policy is one of continual development, so the content of this document is periodically subject to be modified without notice. These changes will be incorporated in new editions of the publication. Vizrt may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

Vizrt may have patents or pending patent applications covering subject matters in this document. The furnishing of this document does not give you any license to these patents.

Technical Support

For technical support and the latest news of upgrades, documentation, and related products, visit the Vizrt web site at www.vizrt.com.

Last Updated

August 4, 2010
1 Introduction

Curious World Maps has for years kept its position as the broadcast industry's number one tool for the creation of branded 2D maps and geographic animations. Vizrt has taken the leading map creation tool to a new level by adding support for real-time 3D maps and adding the option to extend it to a client–server solution. Viz Curious Maps (CM) takes branded map imagery and provides it to different clients that are embedded within Vizrt’s control applications like Viz Trio and Viz Content Pilot. Templates created within CM can also be accessed by Viz Weather, through a newsroom plug-in, Viz Artist, and even NLE systems.

This tight integration allows users to seamlessly create branded, animated maps and add them to graphic templates or insert them directly into a 3D scene.

The map–making capabilities of CM can be further expanded with different map data types in resolutions of up to 60 cm/pixel. High-resolution satellite imagery from around the world can instantly be browsed, download and incorporated.

Viz World Client (WoC) Integrates CM mapping ability and database into Viz Artist and Viz Engine graphics. By utilizing a set of geographic referencing plug–ins and the maps produced by WoC, the creation of location based graphics using maps, 3D objects, texts, and so on, is seamless.

WoC includes a set of Viz Artist plug–ins and the Viz World Editor (WoC editor). The editor is integrated into Vizrt products, simplifying production and control of the graphics.

WoC requires a Viz World Server (WoS) installed, running and connected to the network. WoS is a software module used for creating template based maps and managing client requests. All the map styles, map projects and designs are stored on the server. The server’s license determines the number of concurrent client connections and the available data sets. For more information, please refer to other Viz Curious Maps and Viz World related user and administrator guides.

1.1 Learning the System

The most efficient way to learn our systems is to go through our user’s documentation. This guide is designed to help people with little or no experience in using the WoS and the WoC. The purpose of this document is to help new users become familiar with the client; to illustrate the client’s editor, and to show the available options.

1.2 Document Structure

This section gives a short introduction to the WoC, and what part it plays in the complete CM solution.

Section 2 gives an overview of the new features and basic workflow.
Section 3 describes the license, software and hardware requirements for both WoS and WoC.

Section 4 introduces the Viz Curious Maps (CM) application which is the tool for creating map templates with different styles, projections and so on. It also describes how to create a basic template, explaining the connection between CM, WoC and the WoS.

Section 5 describes how to install, run and remove Viz World Server (WoS).

Section 6 describes the map server configuration tool, and in addition it explains how to add a license file.

Section 7 describes the possible server configurations that allow users to configure single or multiple servers to balance the server load and optimize redundancy.

Section 8 describes the maps caching mechanism.

Section 9 gives a brief overview of the Viz World Client (WoC), some requirements and recommendations, installation and removal notes.

Section 10 describes the Viz World Editor (WoC editor) user interface used by operators and designers to select and edit maps for use with Viz Artist scenes.

Section 11 describes all plug-ins available to designers that design Viz Artist scenes. As an extension to the plug-ins section, section 12 explains the role of geographically referenced maps.

1.3 Related Documents

For complementary information, see the following documents:
2. Viz Content Pilot User’s Guide: Information on how to create content based on templates and how to play out elements in playlists based on these templates.
3. Viz Trio User’s Guide: Information on how to create real-time character generated content based on templates and how to play out pages in shows based on these templates.

1.4 Conventions

The following typographic conventions are used in this document:
• **Bold Text**: Bold is used to indicate emphasized text.
• **Italic Text**: Italic is used to indicate text that should be typed, or variables that should be entered. Italic is also used to refer to related documents.
• **Underlined Text**: Underline is used to indicate cross-references.
• **Numbered Paragraphs**: Numbered paragraphs are used to indicate tasks that need to be carried out. Text in paragraphs without numbering represents ordinary information.
1.5 Contact Vizrt

We encourage your suggestions and feedback regarding the product and this documentation. Our support E-mail address is support@vizrt.com. You are also welcome to use the web-based support at www.vizrt.com, or to contact your local Vizrt support personnel by telephone.
2 About

This section describes the new features of the Viz World Client and Server, and the basic workflow from design to playout.

This section contains information on the following topics:

- New Features
- Workflow

2.1 New Features

Map Builder
- New Map Builder for building map scenes with a new and simple GUI which allows setting of most common map scene properties.
- Publish to design plugin for publishing your design changes to the design pool.

Curious Maps Editor
- Support reading of Keyhole Markup Language (KML) files.
- Improved navigation in WoC editor: dynamic zoom and pan using mouse and mouse wheel. Zoom/pan now uses the existing image before fetching new information from the server.
- Custom guides (safe area, title area, user) in WoC editor.
- Symbol manager for easily placing symbols on the map.

Designs / Labels
- Auto labels can be limited to a specific region(s).
- 2D label support different offsets for bottom, top, left and right.
- 2D label supports fixed strap size.
- Automatic creation of shadows for labels.
- Label offset animation within a hop (hop sync).
- Street designs can be specific to a CWMClient or global for all streets.

Vector data
- Support area shapes from WoC editor in Viz.
- Imported Railways Drawn In Viz Artist.
- Support regions from street data.
- Support Street / line offset: the offset is specified in WoC editor and reflected in the Viz graphics. This is useful to represent two way traffic.
- Allow to reverse the direction of lines and streets.
- Vector line data (street/borders/lines) on terrain.
• Dynamic height offset on all vector line data, lines can be shifted from the map surface (to prevent z buffer problems) and during navigator animation lines are automatically shifted based on camera distance.

Navigator
• Animate from hop to camera animation along a line using the TraceIt plugin.
• Navigator now supports smooth and linear key frames.
• World center option allows building the world around a specific lat long for improved camera accuracy for street level. This is important for street level animation where camera is extremely close to the map to avoid jittering.

Terrain
• Map tiler now supports terrain tiling in order to create high resolution terrain areas.
• C3DTerrain can save height data into Viz Graphic Hub like the “freeze” option in the CWMClient.

Other
• Automatic color correction for pyramid levels. This is especially useful when using satellite imagery where different pyramid levels use different source satellite imagery.
• Two criterions for fade were added to NavFade plug-in: angle and distance to an object.

2.2 Workflow
The basic workflow from design of templates to playout is as follow:
1. A graphic designer creates map templates with styles and so on using Viz Curious Maps (CM).
2. The maps are made available to users on the Viz World Server (WoS).
3. A graphic designer creates scenes with maps and labels in Viz Artist, using a map project on the WoS. A map project defines map and label styles.
4. Based on the scenes, templates can be made for other Vizrt applications.
5. A journalist opens, for example a Viz Content Pilot template, and creates a map to fit the story.
6. The template is saved as a data element, placed in a playlist, and made ready for playout on a Viz Engine.
3 Requirements

This section describes the prerequisites such as the licensing, software and hardware requirements.

To install and configure the software, please see Viz World Server, Viz World Client and Server Configuration.

This section contains information on the following topics:
• 3.1 License Requirements
• 3.2 Software Requirements
• 3.3 Hardware Requirements

3.1 License Requirements

The following licenses are needed to run Viz World Server and Viz Engine:
• A USB dongle license for Viz Engine.
• A USB dongle license for Viz World Server

Note: Viz World Server is a feature included in the license file. If the server has additional features enabled, make sure the new license covers those features as well.

3.2 Software Requirements

• Viz World Server (WoS) and Viz World Client (WoC) version 10.0 installation is required.
 • It is recommended to install the server on a different machine.
 • Viz Curious Maps (CM) database version 10.0 or later is required.
 • Microsoft .NET 3.5 is required for the new Map Builder Wizard.
 • Versions 8.2 and later requires an updated version of Microsoft Visual C++ redistributable package.
 • Download vcredist_2005sp1_x86.exe from Microsoft download center or from the WoC folder on Vizrt’s FTP.

To set up a Viz Curious Maps solution for graphics design, the following software and version numbers are needed.
• Viz Artist 2.8 patch level 4 or later, or
• Viz Artist 3.2.2 or later
• Extra Viz 2 Plug-ins 1.9 or later

For a newsroom/control room operation with Viz Curious Maps solution, the following version numbers are required:
• Viz Trio 2.7 or later
• Viz Content Pilot 5.3 or later
• Viz Media Sequencer 1.19 or later.
3.3 Hardware Requirements

Minimum server hardware configuration:

- **CPU**: Intel Core2 CPU, 2.0 GHz
- **Memory**: 4GB
- **Hard disk space**: A full installation requires 1.3 GB free disk space. Optional data packages will require between 4GB to 500GB free disk space.
- **OS**: Microsoft Windows XP Professional.

Recommended server hardware configuration:

- **CPU**: 2 x Intel Xeon CPU, 3.2 GHz
- **Memory**: 8GB
- **Hard disk space**: A full installation requires 1.3 GB free disk space. Optional data packages will require between 4GB to 500GB free disk space.
- **OS**: Microsoft Windows XP64 Professional or Microsoft Windows Server 2003.

Note: When using more than one server on a single machine (with Server Allocator) the recommend hardware is needed.
This chapter introduces Viz Curious Maps (CM) which is the design tool for all map templates used by Viz World Client (WoC) and Vizrt’s control applications. This guide will not cover the aspects of maps design; however this chapter will explain important elements to note when creating a basic map template. For more information on template design see the *Viz Curious Maps User’s Guide*.

CM is a powerful design tool with a database back-end, used for the creation of branded maps and geographic animations. By extending CM to a server edition, it can provide real-time, branded map imagery to several clients embedded within Vizrt’s control applications. Templates created within CM can be dynamically accessed through Vizrt’s control applications using the WoC.

CM has a comprehensive vector based database that includes regions, cities, roads, rivers, and so on. The vector data is supplied to Vizrt under license from Bartholomew Mapping (a division of Harper Collins publishers). CM also includes global 1 km relief data in the DEM (Digital Elevation Model) format. The DEM data is from the United States Geological Survey (USGS). Essentially, CM uses the best mapping data available and is a full animation and compositing system.

This section contains information on the following topics:
- 4.1 Project Template
- 4.2 Styles Editor
4.1 Project Template

It is good practice to place all template (TPL) files in a single static location.

The recommended location is:
- ..\Program Files\Curious Software\Curious World Maps\Users\Default\Projects

This folder and any sub-folders are automatically scanned for TPL files when the Map Server is launched.

Note: The template location should be exactly the same on both the Maps Server and any Viz Curious Maps standalone design systems. If the paths are not identical it may well break the link to any image elements, e.g. Markers.

This section contains information on the following topics:
- To open a project template
- To save a project template

To open a project template
1. Select Open... (CTRL+O) from the File menu.
2. Select Project Template (*.tpl, *.tpt, *.cgt) from the Files of type drop-list.
3. Select the template file and click Open.

To save a project template
1. Select Save (CTRL+S) from the File menu.
2. Select Project Template (*.tpl) from the Save as type drop-list.
3. Enter a filename, and click Save.
4.2 Styles Editor

Figure 2: Styles Editor

Using the Viz Curious Maps (CM) Styles Editor, users can choose to modify an existing default Style Sheet or create a new one.

The user has the ability to define and fully customize all of the available map data elements via the CM’s Styles Editor. For example, the user can set region colors, select any font (TrueType only), assign any static image (images with alpha are supported) as a marker, modify shadow settings, change relief scale and lots more!

The map Style Sheets defined within the CM Styles Editor are then saved as Project Templates (TPL files). Each Project Template can include any number of Style Sheets. These Project Templates can then be accessed via the Viz World Editor (WoC editor) within other Vizrt products, such as Viz Artist, Viz Trio, Viz Content Pilot, and so on.

4.3 Markers

Many users work with customized Markers; hence, image files can be imported to Viz Curious Maps (CM) from any location. CM will create a Relative or Absolute file path to the actual image file (depending on its distance from the TPL). If CM cannot locate an image file it will replace it with a ‘missing material’ red X.
It is good practice to place all Markers in a single static location, as opposed to multiple folders on a local computer and/or network.

The recommended, and default, location is:
- ..\Program Files\Curious Software\Curious World Maps\Markers

Note: When exporting a map related Viz Artist scene archive it is important to also include the TPL files and any referenced image files (used for Markers, and so on).
4.4 Map Projection

An essential setting for 3D globe building in Viz Artist is to set the map projection to an equidistant cylindrical projection (also known as equirectangular or geographic projection). When using the map on a 3D globe in Viz Artist it will give the right (or more correct) representation of the world.

Note: In Viz Artist vertex mapping should be used when creating 3D globes.
This section contains information on the following topics:

- To set the map projection

To set the map projection

1. Select the Properties tab.
2. Select from the Projection drop-list the Cylindrical Equidistant projection.
3. Select “The World” from the View drop-list (lower-right corner) to check that the map is a flat and not a globe view of the World.
4. Click Apply.

Note: This test also works well via the WoC editor in Viz Artist, and so on.

4.5 Map Position and Project Area Offset

Within Viz Curious Maps (CM) there are two sizes to be aware of, the Project Size and the Map Size. Both of these sizes have their own specific purpose and can have different values; however, if the sizes are different or if the Map Position does not match the Project Area exactly, the map will not look right when used in Viz Artist, Viz Trio, Viz Content Pilot, and so on. Even a miniscule offset will break the map.

Example: The Map Rectangle Tool (on the vertical toolbar) allows the user to freely move the map around and can easily move the map out of position.

To avoid the issue entirely, one should delete the Map Layer and add a new one. This automatically adds a map that fits the current Project Size, but note that it will be using the Globe projection and requires correction.

This section contains information on the following topics:
To set the project size
1. Select Project Settings from the File menu.
2. In the Project Settings dialog box set the Width and Height parameters.
3. Click OK to confirm the new project settings.

To set the map size
1. Select the Properties tab on the Properties panel.
2. Select the Transform options, and set the same Size (X and Y) that was used To set the project size.
3. Press Enter to confirm and update the map.

To add a new layer
• Select Add Layer > Map from the Layer menu.

4.6 Layer Stack and No Animation

To avoid problems with the template (TPL) file, it is good practice to ensure that only one layer is present in the Layer Stack. It is also important to remain at frame 1 in the timeline and refrain from adding any animation keyframes.
5 Viz World Server

This section describes how to install, run and remove Viz World Server (WoS).

This section contains information on the following topics:
• 5.1 Installing Viz World Server

5.1 Installing Viz World Server

Before an installation, check that the following hardware and software is available:
• Viz Curious Maps full version.
• Viz World Server USB license dongle and license file.

This section contains information on the following topics:
• To install Viz Curious Maps
• To install Viz World Server
• To run the Server
• To remove Viz World Server

To install Viz Curious Maps

Note: Exit all Windows programs before running the Setup Program.

1. Start the Viz Curious Maps installer
2. Click Next
3. Click Yes to accept the license agreement
4. Select destination directory, and click Next
 • For example; C:\Program Files\Curious Software\Curious World Maps
5. Choose the components to install, and click Next
6. Select the features you want to install, and deselect the features you want to uninstall.
7. Select a start menu group, and click Next
8. Click Next to start the installation
9. Click Next to accept the Sentinel SuperPro Drivers installation
10. Confirm the installation of the Sentinel SuperPro Drivers
11. Click Finish
QuickTime needs to be installed before running Viz Curious Maps. If QuickTime is previously not installed, continue with the QuickTime installation. If a newer version of QuickTime is installed the installation will be stopped.

11. Click **Next** to continue
12. Choose setup language, and click **OK**
13. Click **Yes** to accept the license agreement
14. Choose destination folder, and click **Next**
15. Configure file and MIME types, and click **Finish**
16. Configure Viz Curious Maps and make sure the software is running and functioning.

To install Viz World Server
1. Run the installation file: `serverupdatex.x.x.exe`
2. Click **Next**
3. Click **Next** to start the file transfer
4. Click **Finish**

To run the Server

![Viz CMS 9.0 (Map D9 v9.0) @ bgcsmaps: \:02 UpTime: 2 days 02:11, Users: 9](image)

1. Double-click the desktop shortcut, or
2. Select the program from the Start menu.
 - All Programs > Curious Software > Viz World Server
3. A console window appears that loads the database. When done, the server is ready to receive requests from clients.

To remove Viz World Server
1. **Open** the Add or Remove Programs tool.
2. Select Viz World Server, and click the **Change/Remove** button
3. Click Finish.
The Maps Server Configuration tool is used to configure server settings remotely. The configuration tool is installed with Viz World Server (WoS) and can be installed with Viz World Client.

From Windows start menu, select:
- **Server**: Programs > Curious Software > Server Config, or
- **Client**: Programs > Vizrt > Viz World Client > Maps Server Configuration tool

CAUTION! The server is locked when using the configuration tool; hence, no client connection will be accepted.

Note: When using Server Allocator with multiple servers, each machine running the servers must be configured separately. Use the configuration tool to connect to all the servers and configure them.

This section contains information on the following topics:
- 6.1 User Interface

See Also
- 7 Server Launcher
6.1 User Interface

Figure 6: Disconnected main configuration window, WoS configuration tool

The server configuration window has two panes, the left pane displays the configuration sections and the right pane displays the parameters of the selected section.

Before using the configuration tool, a connection to the server must be established. When a connection is established, the Connect button will be disabled and the Disconnect button will be enabled. The right pane will be populated with the parameters of the selected section.
Figure 7: Connected main configuration window, WoS configuration tool

- **Send Logoff Message**: Sends a logoff request will to the server. The server will end the session normally.
- **Force Logoff**: Sends a logoff message to the server, ending the session immediately.
- **Restart**: Restarts the server instantly. The configuration tool will be disconnected from the server. When NapServer.ini is defined, and more than one instance of Viz World Server is defined, all instances will be restarted.

Note: Most configuration changes requires a server restart before they take effect.

CAUTION! When Viz Maps Server Config tool is running the server is locked. No client connection will be accepted.

To connect to the server

- Enter the server name or IP address in the Map Server field, and click Connect.

This section contains information on the following topics:

- This section contains information on the following topics:
- 6.1.2 Locations
- 6.1.3 Users
- 6.1.4 License
- 6.1.5 Maps
- 6.1.6 Standalone Clients
- 6.1.7 Symbols
- 6.1.8 Timeouts
- 6.1.9 Proxy Server
- 6.1.10 Server Logging
6.1.1 **Template**

- **Project Template**: Defines the default project that will be used by the server when initially asking for a map or when the client requests a project that does not exist.
- **Project Template Folder**: Defines the folder in which the project templates are stored. When the user clicks the Open New Template button on WoC editor’s Map Tool Options toolbar, the displayed templates list will be fetched from the template files in the Project Template Folder.

6.1.2 **Locations**

The Locations section defines the path to required Viz Curious Maps software components.

- **Root**: Defines the installation folder for Viz Curious Maps
- **Licenses**: Defines the license file(s) folder for Viz Curious Maps.
- **Settings**: Defines the path to the settings folder for Viz Curious Maps.

6.1.3 **Users**

The Users section displays the users configured on the server. Viz World Clients use the pre-defined Guest user to log on to the server. The Users > Guest screen is used to set some of the guest user permissions.

Note: Users are added and removed from Viz Curious Maps only.
• **Allow <user name>:** Allows the user to connect to the server when running WoC editor or Viz.

• **Allow <user name> Projects:** Allows the user to access projects defined in the <user name> Project Folder.

• **<user name> Project Folder:** Defines the path to a folder containing the user's projects.

6.1.4 License

![License parameters, WoS configuration tool](https://via.placeholder.com/150)

The License section displays information about the current server license and enables the user to load other license files.

• **Add License From File:** Opens a file browser that enables the user to load additional license features from a different license file and to add it to the system. After a new license file is added, the Apply button is enabled.

• **Dump License Info:** Saves the license information, that is displayed in the text box, to a file.

• **Apply:** Applies the new license information to the system's license file.

This section contains information on the following topics:

• To manually add a license file

• To add a license file using the Maps Server Configuration tool

• To add a license file using Viz Curious Maps
To manually add a license file

- Locate the License file (*.lic), copy and paste it into the Licenses folder (see example path below).

Note: If the license is not valid, the server will not start, and the server console will exit.

Example: C:\Program Files\Curious Software\Curious World Maps\Licenses

To add a license file using the Maps Server Configuration tool

1. Start the server configuration tool.
2. Select the License section.
3. Click the Add License From File ... button.
4. Locate and select the file and click Open to add the new license file.
 - The license becomes visible in the Edit License window.
5. Click Restart to start the server with the new license.

Note: If the license is not valid, the server will not start, and the server console will exit.

To add a license file using Viz Curious Maps

When starting the Viz Curious Maps design application without a license, a window appears telling that no license can be found.
1. Start the Viz Curious Maps application
2. Click the License button to open the Software License window
3. Click the Edit License File ... button to open the Edit License window
4. Click the Add License from a File ... button to browse for the License file (*.lic)
5. Select the License file and click Open
 - The license becomes visible in the Edit License window
6. Click OK to save the License. The license is saved to the License folder
7. Exit the application and run the Viz World Server.

Note: If the license is not valid, the server will not start, and the server console will exit.

6.1.5 Maps

The Maps section is used to define general map settings.

This section contains information on the following topics:
- Database
- Database Features
- Disputed Regions
- Default Projection
- Map Legend
- Locations
- User DEMs
- Attribution
• Virtual Earth
• Digital Globe
• Display
• Street Admin

Database

Figure 9: Maps Database parameters, WoS configuration tool

- **Database**: Select the data base type. It only displays location entries that are visible in the map area.
- **Shared User Map Data**: Defines the source of data used by the database.

Database Features

- **Accented characters**: Handles accent characters in labels such as ~ in Frâczak.
- **DataBase Features**: Defines if the WoC editor search tool will use additional databases in the system or only the main database of Viz Curious Maps.
Disputed Regions

- **Region**: Displays a list of the disputed regions defined in the system. Select one of the disputed regions to be configured.
- **Configuration**: Displays a list of region and border options related to the selected disputed region in the Region parameter. Select an option from the list and the graphic display will change according to the selected option.

Default Projection

Figure 10: Default projection parameters, WoS configuration tool

The default Projection is used when a client opens a template that doesn’t have a map layer.

- **Globe**: Sets a globe projection.
- **Cylindrical Equidistant**: Sets an unprojected map. Longitude and latitude are mapped directly into X and Y coordinates.
- **Miller Equidistant (37 30)**: Relative distances are correct. Angles are correct around 37 degrees 30 minutes North.
- **Miller Equidistant (43)**: Relative distances are correct. Angles are correct around 43 degrees North. Minimum scale distortion over continents.
- **Miller Equidistant (50 28)**: Relative distances are correct. Angles are correct around 50 degrees 28 minutes North.
- **Gall Isographic**: Relative distances are correct. Angles are correct around 45 North.
- **Lambert Cylindrical Equal Area**: A cylindrical equal area projection which uses the equator as the parallel of no distortion.
- **Behrman Cylindrical Equal Area**: A cylindrical equal area projection which uses 30 degrees North as the parallel of no distortion.
- **Tristan Edwards**: A cylindrical equal area projection which uses 37 degrees 38.3 minutes North as the parallel of no distortion.
- **Peters**: De-emphasizes area exaggeration in high latitudes.
- **Gall Orthographic**: A cylindrical equal area projection which uses 45 degrees North as the parallel of no distortion.
- **Balthasart Cylindrical projection**: An orthographic projection onto a cylinder secant at the 50 degrees parallels. It is cylindrical equal area, but distortion of shape increases with distance from the standard parallels. Scale is true along the standard parallels and constant between two parallels equidistant from the equator. This projection is not equidistant.
- **Mercator**: Mercator projection. Scale and angles correct only at the equator. Very distorted at the poles.
- **Miller**: Distances and angles are only correct on the equator. Shapes and areas are distorted, especially at the poles – but less than with Mercator.
- **Albers Equal Area Conical**: A conical projection which is useful for maps which are wider than they are high, such as the continental United States.
- **Stereographic, Polar Stereographic (North and South)**: A projection which has minimal distortion at the center of the map. Most useful for maps that are zoomed to show whole countries.
- **Tranverse Mercator**: A projection which has minimal distortion at the center of the map. Most useful for maps that are zoomed to show whole countries.

Map Legend

Sets the default unit titles for map legends.
Locations

Figure 11: Maps Locations parameters, WoS configuration tool

The Locations parameters define the path to folders containing relevant data for the specified parameters.

User DEMs

Figure 12: Maps User DEMs parameters, WoS configuration tool

The User DEMs (Digital Elevation Model) define the path to a folder containing Viz Curious Maps elevation data.
Attribution

Figure 13: Attribution image placement, WoS configuration tool

Set the position of the on-screen attribution by dragging it to the desired position:

![Attribution image placement](image)

Defines where the attribution should be placed on the screen.

- **Attribution image (gray rectangle)**: Sets the location of the attribution image on screen.
- **Output Attribution Font**: Sets the font used for the on-screen credit.

To position the attribution image

- Drag the gray rectangle that represents the attribution image area to the desired position.

Virtual Earth

Figure 14: Maps Virtual Earth parameters, WoS configuration tool

![Virtual Earth parameters](image)

Virtual Earth is a set of images (satellite and others) stored on Microsoft Virtual Earth servers. The images can be used in Viz Curious Maps, but requires a credit mark (**Attribution image**) to be displayed on screen.

- **Virtual Earth**: Defines a cache folder for the images retrieved from the Virtual Earth server.
- **Empty Cache**: Deletes all files from the cache folder.
- **Test Connection**: Checks that the Virtual Earth server is online.
Digital Globe

Figure 15: Digital globe, WoS configuration tool

![Digital Globe Configuration Tool](image)

Sets the location of the digital globe cache.

Display

Figure 16: Maps Display parameters, WoS configuration tool

![Display Parameters Configuration Tool](image)

- **Alternate Label Display:** Defines the labels source priority, effecting the list of label options displayed to the user.
- **Street Data:** Defines the visual properties of street edges when drawn on the maps.
Street Admin

Figure 17: Maps Street Admin parameters, WoS configuration tool

The Street Admin section is used to display information about the loaded roads data in the system and road data licensing information.

- **Re-Scan**: When pressed, the configuration tool will check the loaded street data and refresh the display.

6.1.6 Standalone Clients

Figure 18: Standalone Client parameters, WoS configuration tool

A standalone client is an application running WoC editor on machines without a Viz installation.

- **Export Folder**: Defines the save path for standalone client applications.
• **Export Formats**: Image formats are presented to users when saving images. Add a format for each combination of file format and compression options you wish to use. The Options button allows you to set color (black and white, grayscale, 256 colors etc.), and filter options.

6.1.7 Symbols

Symbols are created and exported from Viz Curious Maps, and can be imported using the server configuration tool such that client users can add them to their maps.

See Also

• 10.1.7 Symbols Tab
6.1.8 Timeouts

This section is used to set server timeout values.

- **User Timeouts**: Sets the timeout values for clients logged onto the server:
 - **Minutes Inactivity (Plugins)**: Sets the timeout for client connections when the WoC editor is opened through the CMWClient plug-in. If no map requests are sent to the server during the period of time (in minutes) specified in this parameter, the server will disconnect the client.
 - **Minutes Inactivity (Interactive Navigator)**: Sets the timeout for client connections when an interactive Navigator scene is used. If no map requests are sent to the server during the period of time (in minutes) specified in this parameter, the server will disconnect the client.

- **Periodic Restart**: Enables automatic restarts of the server. It is mainly targeted at 24/7 stations, where Viz Engines are up and constantly requesting maps. The Automatic restart enables the server to restart at the specified time or after a defined period of time, disconnecting all clients and clearing used memory. This is important when the server is used heavily and a lot of maps are generated.
 - **Restart server periodically**: Sets the server to restart periodically based on the After or At Time parameters.
 - **After**: Sets the amount of time (hours) for how long the servers should be running before the server should be automatically restarted.
 - **At Time**: Sets the time for when the server should be restarted.
6.1.9 **Proxy Server**

Figure 20: Proxy Server parameters, WoS configuration tool

This section is used to define the proxy server connection settings. Viz World Server will connect to the internet to fetch data from Virtual Earth or Imagery on Demand servers. If the system uses a Proxy Server that requires authentication, this page is used to provide the login details for the Proxy Server.

- **Name**: Sets the user name.
- **Password**: Sets the user password.

6.1.10 **Server Logging**

Figure 21: Server Logging parameters, WoS configuration tool

This section defines if the server will log system messages to a log file or not.
The Server Launcher is a tool used to start, stop and configure the Viz World Server and Server Allocator. The Server Launcher is by default run as a service.

The Server Launcher is an application installed with the Viz World Server, and can be found on the programs menu, and in the main Viz Curious Maps installation folder, next to the server application.

When configured, the Server Allocator distributes client requests between the registered servers and server machines, balancing server loads and the number of client requests. When configured in a complex environment, multiple map servers with multiple Server Allocators can be used to allow full redundancy and optimal resource distribution.

Starting a single instance of the maps server can be done from the program menu or by using the desktop icon.

Starting the Server Allocator, in order to setup a redundant system and/or configure more than one instance of the map server on one server, is done using the Server Launcher.

When the Server Launcher is running it will typically be floating on top of the desktop; however, it can be minimized to tray. A tray icon (see tray icon above) will enable the user to minimize the application to tray and restore it.

- **Minimize To Tray/Restore**: Restores or minimizes the Server Launcher to tray.
- **Options**: Opens the Options window for configuring the Server Launcher and/or the Server Allocator.
- **Exit Launcher (NOT Recommended)**: Stops all Viz Curious Maps instances and the Server Allocator running on the host.
- **Exit & Shutdown**: Exits and performs a shutdown of the map server machine.

This section contains information on the following topics:
7.1 Server Launcher Configuration

Viz World Server is configured using the Server Launcher.

This section contains information on the following topics:
- 7.1.1 Options

7.1.1 Options

Click the Server Launcher’s Options button in order to configure the map server.
- **Preferences**: Allows the user to set the local server count and enable the Server Allocator.
- **Local Server Count**: Defines the number of server instances that will run on the machine simultaneously. Default value is 1.

CAUTION! When setting the number of instances for each machine, machine hardware should be considered. Every server instance requires physical memory (RAM) and makes intense use of the CPU. Do not abuse this parameter, since client and server performance will be affected.

- **Run Server Allocator**: When disabled (not selected), the Server Allocator will not run on the machine. When enabled (selected), the Server Allocator will run and use the parameters defined in the Server Launcher’s Options window. Default mode is disabled. Server Allocator does not require any license and can be run on any machine.

IMPORTANT! If the Server Allocator is enabled, even for just 1 machine, a machine must be defined in the Controlled WoS list.
• **Launch Options**: Allows the user to run Viz World Server and the Server Launcher as a service, or in console mode. If run as a service, the system can automatically start all server instances when the machine starts without the need to login. If run in console mode, all instances must be manually started.

• **Controlled WoS**: When enabled (see Run Server Allocator), the Controlled WoS settings allows the user to configure the controlled WoS instances.
 - **Machine**: Sets the name of a machine running Viz World Server.
 - **Count**: Sets the number of instances running on the machine. Default is 1.
 - **Priority**: Sets the machine's priority. If more than one machine is defined, the priority must be set for each machine.
 - **Instances**: Sets the number of instances that are controlled by the machine. If the machine has more than one instance running, it is possible to open the Instance Control (click Set) **To set the controlled instances**.

Note: When the Server Allocator allocates a server to a client, it will pass this name to the client, hence, its hostname/ip address must be accessible to all clients.

This section contains information on the following topics:
- Setting Priorities
- To add or remove instances
- To set the controlled instances

Setting Priorities

Normally all servers will use the same priority (1). In more complex scenarios a lower priority can be used, for example when two servers are running two instances each and an allocator.

One server is typically dedicated to an On Air engine and another to a Viz Artist (designer) client such that a designer client will not steal a token from an On Air engine.

Example setup:
- Map server A is for the On Air engine and it controls two instances on map server A with priority 1, and two instances on map server B with priority 2.
- Map server B is for the Viz Artist designer and it controls two instances on map server B with priority 1, and two instances on map server A with priority 2.

The Server Allocator will not redirect any clients with map server A as default to map server B if it can give them an instance on map server A because map server B has a lower priority. So, only if the instances on A are out of license tokens, or not responding, the Server Allocator will direct clients to map server B. And the same for B.

Another example is in a scenario where there are two allocators (one in Location 1 and another in Location 2), all clients from Location 1 should be connected to the server in Location 1, and all clients from Location 2 should be connected to the server in Location 2, and only if any thing goes wrong should clients be allowed to connect from Location 1 to Location 2.
To add or remove instances

- Click the + or - buttons in the Options window to add or remove instances.

To set the controlled instances

![Instance Control](image)

1. Click the **Set** button in the Server Launcher's Options window.
2. **Double-click** the instance to set the control mode to Controlled or Not Controlled.
3. Click **OK**.

Note: The number of controlled instances is displayed in the Instances field and column seen in the Options window.

See Also

- 7.1 Server Launcher Configuration
- 7.2 Configuration Options

7.2 Configuration Options

When using multiple map servers, running multiple map servers on each machine, with a Server Launcher launched on each of the machines, optimal usage of system resources can be obtained. The system can be configured with one allocator for multiple map servers, one allocator on one machine with multiple servers or multiple allocators with multiple server machines.

This section contains information on the following topics:

- 7.2.1 Single Server Allocator Configuration
- 7.2.2 Multiple Server Allocator Configuration: Classic Redundancy

See Also

- 3.3 Hardware Requirements
7.2.1 Single Server Allocator Configuration

The simple environment setup is when running one map server with multiple map server instances and a Server Launcher. In this configuration, the Server Allocator will accept client requests and divert them to the server instances on the same machine. Client connections will be equally divided between the map server instances, allowing better response time and load balancing of server processes.

7.2.2 Multiple Server Allocator Configuration: Classic Redundancy

Having multiple servers, where in each there is a Server Allocator running that controls all WoS instances of all machines.

This configuration guarantees most redundancy as each Server Allocator is updated with the current status of all WoS servers, and in case of a failure in one of the machines, other Server Allocators can provide redirection to any available WoS.

Figure 23: Multiple Server Allocators with Multiple Map Servers.

The above diagram describes a system with two machines running a Server Allocator and two map server instances on each machine. If the client is configured with both machine names, full redundancy within the system will be accomplished.

Note: Any configuration combination between the Server Allocators and the map server instances is valid.
8 Cache Configuration

When working with Viz World in a server/client environment, a cache is used to reduce load time of scenes in Viz. The cache is a shared network storage folder, common to all Viz Engines in the system. The cache is managed by the Viz Engine machines.

Note: In complex environments, Viz Engine machines can be grouped so a different cache is defined to each group.

Map data flow
The maps data stored in the cache is produced by the Viz Engine machines, running Viz World Client applications. When WoC is launched, it connects to the server and enables the user to select a map and add information to the map. When the user accepts the selected map (by pressing the OK button in the maps editor (WoC editor)), the map information will be sent to the scene (and to the relevant WoC plug-ins used in the scene) from the server. WoC plug-ins will load the received data and then store it in the cache. Now, when a scene is initialized, the WoC plug-ins will look for the data in the cache and load it, without connecting to the server.

Since the most time-consuming task in this process is generating the maps, using the cache reduces that time to a minimum and the maps are generated only once.

Note: Before setting a cache folder in a server/client environment, a shared network drive, mapped on all Viz Engine client machines should be created. The cache folder is defined on the shared drive, so all machines will have access to the cache.

This section contains information on the following topics:

• 8.1 Cache Location
• 8.2 Defining the Cache
• 8.3 Cache Folder Structure
• To activate the cache

8.1 Cache Location

The following are some simple guidelines that will ensure caching is optimized when using one or several Viz Engines.

• One: Set the cache location local to that renderer.
• Two or more: Set the cache location to the map server (or other shared network drive) so that one renderer is not favored over others.
8.2 Defining the Cache

The Viz client cache is defined using Viz Engine’s configuration tool (Viz Config). When configuring the cache environment make sure that the following parameters are identical on all Viz machines:

- Cache Directory
- On Disk (Days)

Tip: Control machines should have their cache location set to the same location as defined by the Viz Engine(s).

This section contains information on the following topics:

- To activate the cache
- To configure Viz Engine

To activate the cache

Note: The below procedure is also valid for Viz 2.x users.

1. Run Viz Config or open the configuration interface by clicking the Config button on the main menu in Viz Artist.
2. Select the Maps section.
3. Activate Cache usage.
4. Set the Cache Directory to the defined shared network drive and the folder used as the cache’s main folder.

Note: The Cache Directory has to be identical on all Viz Engine machines that share the cache. UNC paths are also supported.
5. Set the **Memory (Images)** to the required value (default is 32). This parameter defines the maximum number of map images stored in Viz memory when initializing a playlist.

IMPORTANT! Set the number of images to zero (or a low value) on control machines used in the system. The control machines are inferior to Viz Engine machines and it makes no sense to load a large number of images when it is only used for preview.

6. Set the **On Disk (days)** parameter to the maximum number of days that the images will be stored in the cache. When Viz is launched, it will clean the cached map images that are older than the value defined in the On Disk (days) parameter.

8.3 Cache Folder Structure

When using cache in a client/server configuration, WoC plug-ins will manage the cache and sort generated data in several folders under the cache folder. The cache folder hierarchy is created automatically. Only the cache root directory is configured in Viz. The defined cache folder for all clients is the root cache folder. Under the root cache folder, a version sub folder is created using the WoC plug-ins version. Under each version folder, several sub folders are created, according to the requested data:

- **3DLine-Cache**: Stores lines from the WoC editor as OpenGL vertices.
- **3DBorder-Plugin-Cache**: Stores selected borders based on the Region-Cache data.
- **3DRegion-Plugin-Cache**: Stores selected regions based on the Region-Cache data.
- **AtlasCacheFolder**: Stores Downloaded images from Microsoft to enable a smooth animation and faster response time during navigation. Images are stored under sub-folders according to the texture compression used.
- **BorderManagerFullWorld-Cache**: Stores unselected borders based on the Region-Cache data.
- **CWMClient-Cache**: Stores map images and label information that is reused by Viz when loading the scene.
- **Region-Cache**: Stores region vector data.
- **Street-Cache**: Stores street vector data.
- **StreetManager-Cache**: Stores unselected streets based on the Street-Cache data.

Note: The 3DBorder, 3DRegion and BorderManagerFullWorld cache is based on Region-Cache data after a projection is set, and converted to an OpenGL format.

Example: The country Norway will only have one cache file under Region-Cache (since there is only one Norway), but could have many under other folders with different projections.

General Caching Rules

The CWMClient-Cache folder is cleaned when Viz is launched (any of the Viz Engines using the cache), according to the On Disk parameter value.
The data in the cache folders (except for the CWMClient cache) are not deleted when cleaning the cache since it does not change and it can be reused all the time.

See Also
• To activate the cache

8.4 Control Applications and Caching
This section describes commands/actions and setups that will result in maps data being cached when using the Viz Trio and Viz Content Pilot control applications.

This section contains information on the following topics:
• 8.4.1 Viz Trio
• 8.4.2 Viz Content Pilot

8.4.1 Viz Trio
This section describes Viz Trio specific commands/actions that influence how map data is cached when Loading pages, Initializing all pages and performing a Direct Take.

IMPORTANT! Set the same cache directory for the local Viz, and program and preview channels.

This section contains information on the following topics:
• Loading pages
• Initializing all pages
• Direct Take

Loading pages
Opening a scene for preview generates all cache files needed for the scene in the file cache. Any change to the page through Viz Trio (CWM location, hop locations, labels, selected regions and so on), immediately generates all required cache files. When pressing Take, Viz Engine will load to memory all needed map cacheable elements through the file cache that the preview machine just generated without the need to connect to the map server.

Note: Applies only if both of them have same cache folder.

Initializing all pages
The Initialize All button/command will load all scenes to memory (program & preview renderers). All necessary map data will be loaded from the cache files.

Note: It is assumed that each page has been loaded in preview once before, and that cache files have been created.
Direct Take

The **Direct Take** button/command will immediately load the scene into Viz Engine. All necessary map data will be loaded from the cache files that the preview has generated once.

Note: It is assumed that each page has been loaded in preview once before, and that cache files have been created.

See Also

- To activate the cache
- 8.4.2 Viz Content Pilot

8.4.2 Viz Content Pilot

When running Viz Content Pilot in a non-preview configuration, any change to any map element that requires caching will **not** create cache files. This will result in longer loading time of the Viz Engine, because data maps, labels and polygon data has to be requested from the map server.

It is advised to use a Local Preview configuration such that cache files will be created for Viz Engine use.

When running in a multiplexed mode, it is important to request at least a single image preview, such that cache files will created.

IMPORTANT! Set the same cache directory for the local Viz, and program and preview channels.

See Also

- To activate the cache
- 8.4.1 Viz Trio
9 Viz World Client

This section describes the procedures on Installing the Client and Configuring Viz Engine.

Viz World Client (WoC) is used to integrate maps and geographical data into scenes. Its components are the Viz World Editor and the Maps Plug-ins.

This section contains information on the following topics:
- 9.1 Installing the Client
- 9.2 Configuring Viz Engine
- 3.2 Software Requirements

9.1 Installing the Client

Viz World Client (WoC) installs new components in three places:
- Viz 2.X (c:\Program Files\vizrt\viz\)
- Viz 3.X (c:\Program Files\vizrt\viz3\)
- Common files (c:\Program Files\vizrt\common\)

There are two ways of installing the client: a standard installation which requires the user to perform and confirm all actions during the installation, or a silent installation that enables the user to install Viz World Client without using the installer user interface.

A silent installation can be performed in two ways; a standard silent mode installation is performed by setting the /s flag before running the installer. This option is used when a large number of client installations is performed, and will install the Typical configuration option. The advanced silent installation enables the user to perform a custom installation, by creating an InstallShield Silent Response (ISS) file, should a Typical installation not fit the user requirements.

This section contains information on the following topics:
- To install the client
- To install the server configuration tool
- To install the client in silent mode
- To record a silent mode installation
- To install the client in silent mode using an ISS file
- To remove the client

To install the client

1. Double-click the VizCuriousMapsClient_10.x.x.exe installer to start the installation.
2. In the Setup Type window, select Typical, and click Next
 - Select Custom To install the server configuration tool.
3. Select the Yes, I want to restart my computer now option and click Finish.
To install the server configuration tool
1. Double-click the *VizCuriousMapsClient_10.x.x.exe* installer to start the installation.
2. In the Setup Type window, select **Custom**, and click Next.
3. In the Select Features window, select the **Viz World Server Config** option, and click Next.
4. Select the **Yes, I want to restart my computer now** option and click Finish.

To install the client in silent mode
1. Create a shortcut of the client installer’s executable file.
2. Right-click the new shortcut and select **Properties** from the appearing context menu.
3. Select the **Shortcut** tab, and in the **Target** path add the following flag:

 /a

1. Click the **OK** button to confirm the change.
2. Run the shortcut to install the client in silent mode.

Note: The default installation for new installers (first time) includes the client and the *Standalone Clients*. An upgrade will update the existing installation.

IMPORTANT! Any unexpected events during silent installation will result in a failure. Unexpected events can be: Need to restart the computer and Viz not installed in default path.
To record a silent mode installation

Figure 25: Setting the Target path, Silent installation

1. Create a shortcut of the client installer’s executable file.
2. Right-click the new shortcut and select **Properties** from the appearing context menu.
3. Select the **Shortcut** tab, and in the **Target** path add the following flags and file name with the suffix `.iss`:

```
/r /f1 "My_File_Name.iss"
```

Note: The path to the file should be a full path or a relative path and it should be double quoted.

Note: There should be a space between the `/r` flag and the `/f1` flag, but there is no space between the `/f1` flag and the specified file name.
4. Click the **OK** button to confirm the change.
5. Run the shortcut manually **To install the client**. Make the selections to create the desired silent installation.
6. After completing the installation, check that the specified .iss file was created.

Note: The procedure described above, using an application shortcut, can be executed from a command shell running the installation file with the described flags.

To install the client in silent mode using an ISS file

1. Create a new shortcut of the client installer’s executable file.
2. Right-click the new shortcut and select **Properties** from the appearing context menu.
3. Select the **Shortcut** tab, and in the **Target** path add the following flags and the pre-recorded file name with the suffix **.iss**:

```
/s /fl"My_File_Name.iss"
```

Note: The path to the file can be a full path or a relative path; however, it must be double quoted.

Note: There should be a space between the /s flag and the /fl flag, but there is no space between the /fl flag and the specified file name.

4. Click the **OK** button to confirm the change.
5. Run the shortcut to install the client in silent mode.

Note: The procedure described above, using an application shortcut, can be executed from a command shell running the installation file with the described flags.

Tip: Check that the required files were installed.

To remove the client

1. Start Add or Remove Programs and click the Change/Remove button next to the **Vizrt Viz World Client** item to start the client installer, or
2. Run the installer
3. Select the **Remove Installed Files** option and click **Next**
4. Click **Finish**

See Also
- 9.2 Configuring Viz Engine
9.2 Configuring Viz Engine

For the Viz World Client to be able to connect to Viz World Server, a Viz Engine must be present. Viz Engine has its own configuration tool (Viz Config) that is used to configure the connection to the Viz World Server.

Before proceeding with the procedures, make sure that the following is installed:
• A license file (*.lic)
• A USB hardware dongle

Provided that project templates are available, the Viz Config window, after a successful configuration, will look something like the picture above. It is recommended to set a default project; however, this is not required. Project templates are made in Viz Curious Maps by designers, offering different sets of maps, label styles and so on.

To configure Viz Engine

Figure 26: Maps configuration, Viz Config 3.2

Note: For details on how to install Viz Engine, see the Viz Artist User Manual.

1. Start Viz Config
2. Select the Maps section, and click the Active button to activate the configuration window and connection.
3. Enter the Server name of the map server (hostname or IP address).
 • In a Server Allocator setup, with multiple servers and/or full redundancy, add the map server names only separated by comma(s).
4. Click Save and restart Viz Config.
5. Select the Maps section again, and select a Project template from the Available project template list.
 • This becomes the default map setting when using Viz World Client. It is possible, in Viz World Client, to select alternative project templates.
6. Set the **Default Width & Height** which will set the default image size for the maps.
 - The image size can be changed by the *CWMClient* plug-in in Viz Artist.
7. Save and close Viz Config.

See Also

- 9.1 Installing the Client
- 8 Cache Configuration
10 Viz World Editor

Viz World Editor (WoC editor) is a core component of the Viz World Client (WoC) installation. WoC editor can be integrated with numerous Vizrt products that enables users to select, frame and populate maps and use them in Viz. The WoC editor connects to the Viz World Server (WoS) and retrieves the map to be used.

This section contains information on the following topics:
- 10.1 User Interface
- 10.2 Using the Editor

10.1 User Interface

Figure 27: Main window

The WoC editor window includes the map area, navigation and map editing area, map details area and the map tool bar. The user can select (zoom and pan) a region on the map, or use the search tool to find the requested location. The user can add information to be displayed over the map by selecting objects from the database or by manually marking a place on the map. The added objects are displayed in the Map Details area.

This section contains information on the following topics:
- 10.1.1 Map Area
- 10.1.2 Navigation and Map Editing Area
10.1.1 Map Area
The map area displays the current map and enables the user to modify the map interactively, according to the selected tool in the buttons toolbar and by using the integrated **Zoom Options**.

Zoom Options
In the upper left corner of the Map Area there are two rectangular blue shaped buttons that can be used to zoom in and out of the map. In addition it is also possible to use the mouse (left button) and/or in combination with the keyboard.

The zoom options, besides menus and buttons, are:
- Drag and draw a rectangle to **zoom in** to fit.
- Click the left mouse button to **zoom in**.
- Hold down SHIFT to **zoom out**.
- Hold down CTRL to **zoom in** in smaller steps.
- Hold down CTRL and ALT to **zoom out** in smaller steps.

10.1.2 Navigation and Map Editing Area
The navigation area enables the user to locate places by searching the database or selecting a place from the explorer list. When a place is found (or selected) the user can fit the map to the requested area, add information to the map, highlight the region and modify the map using the Viz Curious Maps database.

Using the Results
After conducting a search or using the explorer, the results will be displayed as a list. When an entry is selected, the buttons on the right side of the list will become enabled:

- **Add to map**: Adds the selected entry to the map. The selected entry will be added to the map graphically as defined in the selected map style. A map style defines map symbols, fonts, icons, colors, and so on. For map styles see also Map Tool Bar and the **Map Style** drop-down menu.

- **Center map**: Pans the map to center the selected entry (keeping the current map scale size).
• **Fit to fill**: Centers the map and scales the map to fill the map area.

• **Show details**: Opens the browsing tool, which displays the context information for the selected detail. The context information includes the regions containing the detail (that is country, state and county) and the capital of that country.

10.1.3 Search Tab

Figure 28: Search result, Turkey

The search tab is used for searching the database for a place, using a string or sub string typed in the name text box. The search results can be filtered by using the radio buttons and the drop down list.

Search Parameters

- **Find All**: When selected it displays all matching entries in the database.
- **Find Visible**: When selected it only displays matching entries visible in the current map.
• **Type:** Limits the result list according to the selected Type. For example region, capitals, tourist attraction, and so on.

• **Named:** Results will be limited according to the above setting. Enter the name of the place or parts of the name to search for.

• **Addr and Cross st.** Enables the user to search for specific addresses.

Note: Searching for addresses requires licensed street data installed on the server.

10.1.4 Explorer Tab

![Figure 29: Explorer result of British Columbia](image)

The explorer tab is used for selecting a location from a list of places derived from the server’s database. The list is displayed in a tree format showing countries, regions, cities, and so on.

Explorer Parameters (list filter)

• **Visible:** Only displays location entries visible in the current map.

• **Type:** Limits the search result list to the selected type like region, capitals, tourist attraction, and so on, when one of the entries in the list of available types are selected.

• **Filter:** Filters the search result further.
10.1.5 Extra Data Tab

Figure 30: Extra Data tab, Points of Interest

The Extra Data tab is used for selecting a street from the streets database on the server, and Keyhole Markup Language (KML) files.

Note: To find New York, type N, then type E, etc. with every character typed in the string filter the list will be smaller.
Note: Streets data requires additional license features and the installation of street data on the server.

This section contains information on the following topics:
• Streets
• Import KML

Streets

Streets data is available from the Streets node, and are sorted by Motorways, Primary Roads, Main Roads and Other Roads. Use the Filter search to search for streets.

Import KML
Keyhole Markup Language (KML) files can be imported and added to the map. The KML data will be accessible from the Extra Data tab as with street data. By clicking the KML Files node, all the imported KML files will appear as sub nodes. Click one of the imported KML files to open the KML file window; the respective file will be listed.

KML files currently must be manually imported into the server. Files are placed in the KML folder under the Curious Software folder.

Example: C:\Program Files\Curious Software\Curious World Maps\KML

10.1.6 Images Tab

The Images tab displays geo referenced satellite images that are added through the Viz Curious Maps standalone client.

- **View as icons**: Displays the available images as icons or display the available images as a list.

To add geo referenced images
2. Create or open a map project.
3. From the Contents panel, select Overlays.
4. Click the Add Satellite Image button to open the Image Manager.
5. Click the + symbol to search and select a geo referenced image.
7. Restart the Viz World Server to load the new images.

Note: Images should ideally reside on the map server or on a shared drive.

10.1.7 Symbols Tab

Symbols are added using Viz Curious Maps, and can be imported using the Server Configuration tool or Viz Curious Maps.
To add symbols
1. **Start** Viz Curious Maps, preferably on the maps server.
2. Create or open a map project.
3. From the **Tools** menu, select **Symbols**.
4. In the Symbols dialog box, click the + symbol (bottom) to search and select for a symbol.
5. **Close** Viz Curious Maps.
6. **Restart** the Viz World Server to load the new images.

Note: Images should ideally reside on the map server or on a shared drive.

10.1.8 Map Tool Bar

Figure 31: Map tool bar

The map tool bar includes a row of buttons controlling the map interactive mode. The map area enables an interactive map selection and manipulation and the map tool bar is used for selecting the map interactive behavior.

This section contains information on the following topics:
- Map Tool Options
- To create a map using the Quick Map location browser
- To set the map location
- To pick a label and add it to the map

Map Tool Options

- **Available Map Stylesheet:** Displays a list of available map styles of the selected template. Select a map style to apply the style’s design to the displayed map.

- **View Presets:** Displays a set of view presets. Available options are: The World, United States, N America, S America, Americas, Africa, Asia, Middle East, S Asia, Europe and United Kingdom.

- **Open New Template:** Loads one of the defined templates installed on the server creating a blank map with the template’s styles and settings. When pressing this button a confirmation window will open. When confirmed, the template window will open. Select one of the projects in the list and click OK. A new map will appear in the map area using the new template’s default styles and settings.
• **Undo button**: Cancels the last change on the map.

• **Redo button**: Cancels the last canceled change on the map.

• **Bird’s Eye**: Displays the available imagery Bird’s Eye imagery from Microsoft Virtual Earth. When clicking the button, the imagery for the area of the current map will be displayed enabling the user to select an image for the map.

• **Quick Map**: Opens the Quick Map location browser that enables the user to create a map using the Quick Map location browser.

• **Set Location**: Opens the Set Location dialog which enables the user to set the map location using longitude, latitude and map size values (radius around the defined point).

• **Region Zoom**: Enables the user to click and drag the mouse on the map to create a rectangle surrounding an area on the map (rubber band).
 - The rectangle displays two icons; a cancel icon in the upper right corner and accept icon in the lower left.
 - The rectangle keeps the aspect ratio set for the map unlike regular zoom (see below).
 - Region zoom can be adjusted before accepting the area selection.

• **Zoom**: Zooms into the map on every click on a point in the map centering the clicked point in the Map Area. Another option is to drag and create a selection area. When the mouse button is released, the selected area will become the selected map. Selecting an area using the zoom option does not maintain the aspect ratio.

Note: Both Region Zoom and Zoom allows for area selection in the Map Area; however, Region Zoom will maintain aspect ratio and allow the user to cancel the operation after the selection was made.

• **Pan**: Enables the user to click and drag on the map to move the map in the direction of the drag.

• **Pick Feature**: Shows a group of available places from the database as “phantom labels”. This feature enables the user to pick a label and add it to
the map. The labels will appear over the map only when an entry is selected in the explorer tab or in the search area.

- **Browse Map**: When clicked any click on in the Map Area will update the browse window with context information for the clicked position. The context information includes regions containing the position (for example country, state and county) and the capital of the country.

- **Move Label**: Enables the user to move a label in the Map Area. Select a label on the map and move the label around in the graphic display. Map Label enables the user to move both the tip and the caption of user created labels. In other labels only the caption can be moved.

- **Add Label**: Adds a label at the click point, enabling the user to enter and select a label text and label icon type.
 - **Remember label and publish to all users**: When this option is checked, the new label will be added to the database. Whenever the place is selected all the customized labels will be available for selection by the user. When the option is unchecked, the modified label will be used only by the current map.
• **Streets:** Enables the user to select and label streets on the map. Street data must be loaded for this feature to work (see Extra Data Tab).

• **Add Shape:** Adds shapes to the map. Select between points (straight) and bezier (curved). Selecting the Add Shape button also opens a small toolbox for selecting shape designs. Available options are:
 • **Area:** Fills the drawn shape, and will also close the line (see Closed Line).
 • **Closed Line:** Allows the user to close the shape without setting the final point (e.g. 2 points will draw a third closing the line with the first point).
 • **Open Line:** Allows the user to draw a line that is not closed.
 • **Delete Last:** Deletes the last drawn line.
 • **Cancel:** Cancels the draw operation.

• **Edit Shape:** Allows the user to edit the shapes and streets added to the map. Streets (roads) can be offset, while shapes can be adjusted using the Point toolbox that appears when the Edit Shape button is selected.

Note: Shapes and streets can be edited further using the maps plug-ins (e.g. 3D Line and 3D Line Manager).
To create a map using the Quick Map location browser

1. Click the More button’s Quick Map option in the WoC editor.
2. Select or search for a country in the Country list.
 - The map area will fit to the selected country and the State/Region list will show a list of available regions of the selected country.
 - When a country is selected in the list, the Add to map and Mark Area buttons will be enabled.
3. Select an entry from the list, the County/sub region list will be filled.
4. Click Finish to close the location browser and create the map.

Tip: Clicking the Search button switches the Quick Map tool to the search tool mode.

To set the map location

1. Click the Set Location button in the WoC editor to open the Set Location dialog box.
2. Enter the longitude, latitude, and map size radius in miles, kilometers, meters or yards.
3. Click OK to calculate and display the map in the Map Area.
To pick a label and add it to the map

1. Perform a search and select a location.
2. Click the Pick Feature button to display all the phantom labels for the selected area.
3. Click a label to add it to the map.

10.1.9 Map Details Area

Figure 32: Map details area

The Map Details area displays a list of all the added locations over the map. The user can modify the map, by selecting one of the added places and the control buttons on the right side of the map details area.

Map Details parameters

- **Style**: Sets or modifies the graphic display representing the selected place on the map. The style selection will affect the highlighting color used to mark the selected place, the label, and so on.
- **Font Size**: Sets the font size used for the label in the graphic display. Font size is only relevant for the display in the editor and for text labels that are exported as part of the map texture; hence, it will not affect the size of labels rendered by Viz.
- **All Caps**: Uses only capital letters in the graphic display when showing the selected place’s label.
• **Rename label button**: Opens the Rename Label dialog box that will allow the user to customize and add other labels to the database by entering a new label for the selected place or by selecting an existing label from the list of labels or modifying an existing label.

• **Remember change and publish to all users**: When this option is checked, the renamed label will be added to the database. Whenever the place is selected all the customized labels will be available for selection by the user. When the option is unchecked, the modified label will be used only by the current map.

Note: The label will be used in the graphic display and in the map details area.

• **Delete place from map**: Removes the selected entry from the map (and from the map details list).

• **Delete all places from map**: Removes all added places from the map (and from the map details list).

10.2 Using the Editor

This section describes how to use the Viz World Editor (WoC editor) with Viz Artist, Viz Content Pilot, Viz Trio and Viz Weather.

This section contains information on the following topics:

• To import tutorial scenes
• To test with Viz Artist
• To test with Viz Content Pilot
• To test with Viz Trio
• To test with Viz Weather
To import tutorial scenes

Note: The tutorial scenes can be downloaded from the Vizrt FTP server (vizrt documentation/VizCuriousMapsClientAndServer).

1. Download the tutorial scenes from the FTP.
2. Start Viz Artist
3. Click Import, and select Archives from the drop list.
4. Browse for and select the archive.
5. Click Import, or drag and drop it to a different project/folder.

To test with Viz Artist

Viz Artist requires no additional setup as long as the Viz World Client is installed, and the map server settings in Viz Config’s Maps section have been activated.

1. Open a map scene (see how To import tutorial scenes).
2. Locate and click the **CWMClient** icon in the tree structure to open the CWMClient Editor.
3. In the editor, click the **Viz World Editor (WoC editor)** button to open the editor.
4. Search and select a map, and click OK to add a map to the scene

Note: Make sure that **ControlMap** plug-ins are placed on the same containers as the CWMClients in order for Viz Content Pilot to be able to change their maps.
To test with Viz Content Pilot

Viz Content Pilot’s (VCP’s) map server parameters are stored on the VCP database. The parameters can be set or changed using the VCP client (Options > Preferences > Viz Curious Maps).

For an operator or journalist to be able to change maps, the map scenes must use the ControlMap plug-in. Also, before the scene can be used in the VCP client or Newsroom Component a map template must be created using Viz Template Wizard.

1. Start Viz Template Wizard
2. Import a Viz Artist map scene to the Viz Template Wizard
 - The created template must include an image component
3. The ImageSources property should be set to IsAdvancedCuriousMap
4. Save the template to a concept

Once the template is stored it can be opened by the VCP client or Newsroom Component.
1. Start the VCP client or Newsroom Component, and open the newly created template.
2. Click the image in the template to open the WoC editor.
3. Enter a search criteria (for example London)
4. Select London City, England from the list
5. Tick London City, England, and click the zoom button (map icon) for England
6. Click OK to close the WoC editor.
7. Save a data element of the template and add it to the playlist.
8. Play or preview the scene on a local Viz Engine renderer to see the map animations.

To test with Viz Trio

Viz Trio’s map server parameters are set by the local Viz Engine that Viz Trio uses to render the scenes locally; hence, there is no need to configure Viz Trio.
1. Start Viz Trio
2. Select Import Scenes from the drop-list in the Editing window.
3. Locate and import a tutorial scene to create it as a Viz Trio template.
4. Select and double-click to open the newly added template.
5. Click the Browse Viz Curious Maps button to open the editor.
6. Enter a search criteria (for example London)
7. Select London City, England from the list
8. Tick London City, England, and click the zoom button (map icon) for England
9. Play the scene in Viz Trio so see the map animations

To test with Viz Weather

To enable the Viz Curious Maps capabilities, add the following entry to the Viz Weather INI file:

```
[CURIOUS]
cwm_enabled=y
simplified=n
```
1. Open a map enabled scene in the editor
2. Click the Map button on the editor toolbar
3. Click the Map icon to select a map
4. Select From Server
 • When selected, a full version of the map editor opens
5. Select a map project
6. Enter a search criteria (for example London)
7. Select London City, England from the result list
8. Enter a new search criteria (for example England)
9. Select England from the result list
10. Adjust the view and style of the map
 • Use the map buttons (lower right) in Viz World Client
11. Click OK to close the map editor.
12. Play the scene in Viz Weather to see the map animations.
11 Maps Plug-ins

The Viz World Client (WoC) installation includes a package of plug-ins used for enhancing the geographic referencing ability in Viz Artist. The WoC plug-ins includes geometry plug-ins, container function plug-ins, shader plug-ins and scene plug-ins.

The Container Function plug-ins are divided into four plugin folders:
- **Maps**: Contains commonly used plug-ins.
- **Maps-Adv**: Contains advanced plug-ins.
- **Maps-Man**: Contains a set of manager plug-ins used for batch creation of 3D Objects such as regions, borders, and so on.
- **Maps-Obs**: Contains obsolete plug-ins, installed only for backward compatibility. These plug-ins should **not** be used when designing new scenes.

Tip: Refer to the scene design tutorial for additional information. The tutorial is available for download on Vizrt’s FTP.

Note: When pressing the button labeled with “?” in the plug-ins UI, the relative help topic in the user guide will open.
This section will describe the parameters and usage of the plug-ins (in alphabetical order).

Table 1: Map plug-ins

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Container</th>
<th>Shader</th>
<th>Scene</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Label</td>
<td>3D Border Manager</td>
<td>3D Line Shader</td>
<td>3D Map Setting</td>
</tr>
<tr>
<td>3D Border</td>
<td>3D Line Manager</td>
<td>Color Matrix</td>
<td>Light On Globe</td>
</tr>
<tr>
<td>Control 3D Line</td>
<td>3D Region Manager</td>
<td>Curious 3D</td>
<td>Label Manager</td>
</tr>
<tr>
<td>3D Line Control</td>
<td>3D Road Manager</td>
<td>Terrain Shader</td>
<td>Map Builder</td>
</tr>
<tr>
<td>3D Region</td>
<td>Center Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 3D Region</td>
<td>CWM Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Roads</td>
<td>Focus On Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>Geo Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat MR</td>
<td>Globe Zoom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geolmage</td>
<td>Hop Sync</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe</td>
<td>Label It</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyramid Control</td>
<td>Locator Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shadow Agent</td>
<td>Map Layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Map Layers Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Map Pyramid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Map Tiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NavCom</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NavFade</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NavFinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Navigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NavScale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NavSlave</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Publish To Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screen Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trace It</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>World Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refresh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>World Position</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.1 2D Label

The plug-in can be found in the following folders:
- Viz Artist 2: Object -> Built in.

Figure 33: 2D Label example

The 2DLabel plug-in is used for creating two dimensional labels on the map, based on labels received from the selected map or automatically generated labels generated by the LabelManager plug-in according to the map information received from the Navigator plug-in.

Note: When adding a 2DLabel plug-in to a container, a World Position plug-in and an Alpha plug-in will be added automatically to the same container. The Label Manager scene plug-in has to be added manually to the scene when using the 2DLabel plug-in without a Navigator plug-in.

This section contains information on the following topics:
- 11.1.1 Plug-in Description

See Also
- 11.42 Navigator plug-in
- 11.30 Label Manager plug-in
11.1.1 Plug-in Description

The 2D Label plug-in has five sections of parameters (GUI Options).

This section contains information on the following topics:
• Label
• Bevel
• Caption
• Special
• Fade

Label

Figure 34: Label, 2D Label editor

Equal Spaced – use equal spacing for the side margins and top/bottom margins.
Separate – use different margins for each side of the labels.

• Width Margins: Sets the margin between the sides of the text and the label background edges.
• Height Margins: Sets the margin between the top and bottom of the text and the label background edges.
• Outline Width: Sets the width of the label’s background outline.
• Label Color: Sets the color of the label’s background fill.
• Outline Color: Sets the color of the label’s background outline.

Note: The numeric values next to the color parameters are the alpha values of the label and the label outline.

Note: The color palette effects only the selected color parameter (label or outline), and it will appear when one of the color parameter is selected. (Viz 3). When using Viz 2 the color palette is displayed in all tabs.

Bevel

Figure 35: Bevel, 2D Label editor

- **Bevel**: This parameter defines the bevel value of the label’s background corners.
- **Roundness**: This parameter defines if the background corners will be rounded or not.
- **Detail**: Defines the quality of the label object (when a higher value is selected, more polygons will be used to build the label object).
- **Lock Aspect**: When enabled (*On*), the bevel and roundness parameters will be applied to the corners of the label object equally. When disabled (*Off*), the bevel and roundness parameters will be applied to the corners using the object’s height and width ratio.
Caption

Figure 36: Caption, 2D Label editor

- **Pivot**: Defines the label’s object shape and location in relation to the label’s geographic location:
 - **Pointer**: The label object includes a pointer going out of the label background and pointing at the label’s geographical position. When selected, additional parameters will be enabled: Width and Connection Bevel.
 - **Outline**: The label object has a rectangular shape and the outline of the shape is on the label’s geographical position.
 - **Center**: The center of the label is placed over the label’s geographical position.
 - **Offset**: The label is placed at the defined offset from the label’s geographical position.
- **Width Type**: Defines if the (strap) width should change as the caption is moving away from the tip or stay fixed.
- **Width**: Defines the width of the pointer’s base overlapping the label background. This parameter is only enabled when Pointer is selected.
- **Connection Bevel**: Defines if the area connecting between the pointer and the label background is to be rounded or sharp. This parameter is only enabled when Pointer is selected.
- **Rotate Labels**: Defines if labels, created in Viz (3D labels), will be rotated like the labels in Viz World Editor (WoC editor). If set to Disabled, all labels will be displayed horizontally. If set to Enabled, labels that were rotated in Viz World Editor will be rotated in Viz.
- **Caption Source**: Defines how the labels will be placed on the map.
 - When WoC editor is selected, the labels will be placed as they were placed on the map in the Viz World Editor.
 - When Presets is selected, the LabelManager plug-in will use the defined presets to place the labels over the map. The LabelManager plug-in will optimize the label position such that the labels will not overlap.
• **Number of Presets**: Defines the number of label position presets available to the user (one to four presets). This parameter is only enabled when Caption Source is set to Presets.

• **Current Preset**: Selects the preset number to be configured, using the Direction and Distance parameters. Each preset should be selected and the label position should be adjusted. This parameter will be enabled only when Caption Source is set to Presets.

• **Direction**: Sets the angle of the label in relation to its geographic position.

• **Distance**: Sets the distance of the label from its geographical position.
Special

Figure 37: Special, 2D Label editor

- **Shape**: Defines the pointer shape:
 - **None**: The pointer will have a sharp point shape.
 - **Circle**: The pointer will have a circle at the tip of the pointer.
 - **Square**: The pointer will have a circle at the tip of the pointer.
 - **Straight**: The pointer will have straight lines at the tip of the pointer.
- **Size**: Defines the size of the shape at the tip of the pointer. The parameter is only enabled if the pointer is selected and a tip shape is set.

- **Navigator Overlay**: Defines how the label will be displayed over the map. Available options are Disabled, Fixed, Scaling, Near Scale and Far Scale.
 - **Disabled**: Places the label on the map using its geographical referencing.
 - **Fixed**: Places the label by keeping its geographical referencing but using a different camera (either with dynamic image or with a front layer). The label size will remain fixed.
 - **Scaling**: Places the label by keeping its geographical referencing but using a different camera (either with dynamic image or with a front layer). The label will scale trying to imitate the camera movement.
 - **Near Scale**: Defines the maximal size of the label on the screen (that is when zooming in what will be the final size of the label).
 - **Far Scale**: Defines the minimal size of the label on the screen (that is when zooming out what will be the final size of the label).

- **Static Map Scale**: Defines if scaling of the label will be performed over a static map (no Navigator plug-in used). When disabled (Off), no scaling will be applied to the labels. When enabled (On), an additional parameter will be enabled:
 - **Scale**: Sets the scaling factor of the labels when used over a static map (no Navigator Plugin).

- **Collision Mode**: Defines how the labels will be placed when an overlap or collision between two labels occur:
 - **Tip Based**: The pointers of overlapping labels can cross or touch, but no overlap of label bodies are allowed.
 - **BBox Based**: A bounding box is calculated around the entire label (label body and pointer). Overlap between a label’s bounding box is not allowed.

Fade

Fade defines the fade effect parameters to be used with the duplicated labels. Fade has two fade modes: **Stand Alone** and **Controlled**.

Figure 38: Stand alone fade mode, 2D Label editor

- **Stand Alone**: The label appearance is manually defined by setting the additionally enabled parameters:
 - **Fade On Time**: Defines a label fade effect, beginning at a relative point to the defined hop duration. An additional parameter will be enabled, *Time To Hop*, defining when the fade will occur.
 - **Fade On Distance**: Defines a label fade effect, beginning at a relative distance from the hop final location.
 - **Fade On Lat/Long**: Defines a label fade effect, beginning at a Longitude and Latitude offset from the hop final location. An additional parameter will be enabled, *Lat/Long*, defining the offset from in degrees.

Note: The **Fade On Distance** parameter is only enabled if **Navigator Overlay** is set to **Scaling**.
With **Fade Mode** set to **Controlled**, the label appearance is automatically set by the 2DLabel plug-in. It can also be based on the **Label Manager** plug-in settings and the **Navigator** plug-in animation (hops).

- **Step**: Controls when the label will fade in and out in relation to an animation. In general the fade can be based on the camera distance (for example; capitals are in view when distance is below 1000KM) or on timing in relation to the hop:
 - **Auto**: When a label is of type point (added by the user) it will fade in and out based on distance to hop. If the label is of type place/region it will be faded in and out based on the distance set in **Label Manager** plug-in. If the hop is not close enough for the label to show and the label was added by the user it will be faded in based on hop timing and not distance.
 - **On Hop**: Links the fade to the hop timing.
 - **Point 1/Point 2**: These are reserved for labels where the distance is configured by the **Label Manager** plug-in.
 - **Selected Label Timing**: If the label’s fading is based on hop timing, this parameter sets the time in relation to the hop time. It is disabled if **Step** is set to **Point 1** or **Point 2**. Since the label appearance is automatically calculated this timing offset will be used in the calculation. Select one of the options:
 - **At End**: Labels appear at the end of the animation.
 - **Close to End**: Labels appear just before the end of the animation.
 - **Ahead**: Labels appear before the end of the animation.
 - **Well Ahead**: Labels appear well before the end of the animation.
- **Label Priority**: Defines the priority of the currently edited label in relation to other labels when a conflict between label positions occurs. The highest priority will be preferred when displaying the labels.
 - **Auto**: Sets the label priority using the **Label Manager** plug-in.
 - **Normal, High**: When there is a conflict between two normal (or high) priority labels, the **Label Manager** plug-in decides which label to show.
 - **Always**: When always is selected, the label will be displayed even if it conflicts with another label (with any priority).
11.2 3D Border

The plug-in can be found in the following folders:

- Viz Artist 2: Object -> Built in.

Figure 40: 3D Border example

The 3DBorder plug-in is used for applying graphic designs to the border data retrieved by the 3D Map Setting scene plug-in. Each 3DBorder plug-in is used to filter and define which borders will be drawn.

Note: When adding a 3DBorder plug-in to a container, a 3D Line Shader plug-in will be added automatically to the same container. The 3D Map Setting plug-in has to be added manually when using the 3DBorder plug-in.

This section contains information on the following topics:

- 11.2.1 Plug-in Description

See Also

- 11.5 3D Line Shader plug-in
- 11.6 3D Map Setting plug-in

11.2.1 Plug-in Description

The 3D Border plug-in has five sections of parameters, and a Rebuild button.
The **Data** tab is used for defining which borders will be displayed by the plug-in. The **Width** tab is used for defining the border width and other graphical related attributes. The **Outline** tab is used for adding an outline to the borders. The **Effect** tab is used for defining an animation of the border. The **Advanced** tab is used for defining general parameters of the border.

This section contains information on the following topics:

- **Data**
- **Width**
- **Outline**
- **Effect**
- **Advanced**
- **Rebuild** button

Data

Figure 41: Data, 3D Border editor

- **Draw**: Sets the border type that will be drawn by the plug-in. Available options are Country, Region and All.
 - **Country**: Draws country borders only. When Country is selected, additional options are made available: Country, Coastline and Both (see Select).
 - **Region**: Draws region borders only. When Region is selected, additional options are made available: Region, Sub Region and Both (see Select).
 - **All**: Draws all available borders retrieved by the 3D Map Setting plug-in.
- **Select**: Displays the available Country or Region options when either of the two buttons are selected.
 - **Country**: Draws inland country borders only.
 - **Coastline**: Draws country coastline borders only.
 - **Both (Country & Coastline)**: Draws both inland and country coastline borders.
 - **Region**: Draws region borders only.
 - **Sub Region**: Draws sub region borders only.
 - **Both (Region & Sub Region)**: Draws both region and sub region borders.
- **Selection**: Defines if the plug-in will use the selected regions in the map (received from the CWMClient plug-in) or not. If enabled, only the borders of the selected regions in the map will be drawn. If disabled, all borders will be drawn according to the plug-in settings (country, region, and so on).
Width

Figure 42: Width, 3D Border editor

- **Fixed (Pixels)**—Uses a fixed width when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.
 - **Width (Pixels)**: Sets the line width in pixels.
 - **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
- **Scaling**: When selected, line width will vary according to the camera distance from the map. Available parameters that allow the user to set the line attributes are Width, Minimum Width, Maximum Width, Minimum Draw Width and Fade Edge.
 - **Width (Meters)**: Sets the line width in meters on the map. The closer the camera to the map, the wider the line will be drawn.
 - **Minimum Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Width value, then the Minimum Width value will be used.
 - **Maximum Width (Pixels)**: Sets the maximal line width in pixels. This value will be used when the camera distance is small and the line width should have been larger than the Maximum Width value (in pixels).
 - **Minimum Draw Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Draw Width value, and larger than the Minimum Width parameter, then the line will not be drawn.
 - **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
- **Fixed (Mm)**—Uses a fixed width, in viz units, when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.
 - **Width**: Sets the line width in pixels.
 - **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
Outline

Figure 43: Outline, 3D Border editor

- **None:** No outline to the borders is drawn by the plug-in.
- **Master:** Acts as the master plug-in for outline behavior. Other 3DBorder plug-ins can be set as clients of this plug-in. The same outline attributes will be applied to borders drawn by the master plug-in and by all other slave plug-ins. When selected, additional parameters will be enabled:
 - **Outline Width (%):** Sets the width of the outline, as a percentage of the border width, where 0% is the border width.
 - **Outline Fade (%):** Sets the percentage of softness applied to the outline edges.
 - **Outline Color:** Sets the color of the outline and the alpha value of the outline.
- **Slave:** Draws the outline according to the defined outline in the master plug-in above it in the scene hierarchy. All other parameters will be disabled, displaying the master’s values.
- **Stand Alone:** Defines the outline parameters for the borders drawn by this 2D Label plug-in only:
 - **Outline Width (%):** Sets the width of the outline, as a percentage of the border width, where 0% is the border width.
 - **Outline Fade (%):** Sets the percentage of softness applied to the outline edges.
 - **Outline Color:** Sets the color of the outline and the alpha value of the outline.

Note: The hierarchy structure is important when using the master/slave outline configuration. The master plug-in should always reside as the first container in the group of 3DBorder containers. An Expert plug-in should be added to the map (above the 3D Roads containers) and Z-Buffer Draw should be set OFF.
Effect

Figure 44: Effect, 3D Border editor

The Effect tab is used for creating an animation on the line size. After the line object is created, it can be animated by setting keyframes of the length parameter.

- **Length**: Sets the line length, where the value 100 represents 100% of the line length.
- **Fade**: Defines the softness that is added to the line edge as the length animation advances. When the length is 100, the end of the line will not be affected by the Fade parameter.
- **Height Offset**: Offsets the borders from the map (on the fly).

Advanced

The Advanced tab is used for defining general parameters for the 3DBorder object.

Figure 45: Advanced, 3D Border editor

- **Border Quality**: Selects the quality of the border line:
 - **Controlled**: Border quality is calculated by the navigator distance from the border object.
• **High**: Uses high quality when drawing the border line (performance will be slower).
• **Medium**: Uses medium quality when drawing the border line.
• **Low**: Uses low quality when drawing the border line. Border line will look pixelized when zooming into the map.

- **Culling Threshold**: Defines the size of the borders that will be drawn. Select an option that will fit the graphic design or other factors. For example; If a country has small islands and the threshold is set too high, the islands will not be drawn correctly or drawn at all.
- **Add Level Down**: Defines if the sub region borders will be drawn with the region borders, or if regions will be drawn with countries.
- **Control Mode**: Defines if the 3DBorder object is externally controlled by the 3DBorderControl plug-in or not. Border objects are controlled by groups. Set the group number for the object.
- **Update Texture Mapping**: Should the texture coordinates be updated based on line width.
- **Low Angle Compensation**: Lines become too thin at low camera angles as a result of the perspective distortion. When that happens, there are not enough pixels to support a smooth, antialiased line, and the lines look jaggy and aliased. This mode compensates for that by both widening the lines and applying transparency when they are viewed at too low angles.
- **Wireframe**: Shows the border object as a wireframe.

Rebuild

Figure 46: Rebuild, 3D Border editor

The Rebuild button triggers the plug-in to redraw the borders according to the plug-in parameters. Some parameters are updated as the parameters are changed and do not require a rebuild command, but it is good practice to rebuild the borders after setting the parameters.

11.3 3D Border Control

The plug-in can be found in the following folders:
- **Viz Artist 2**: Object -> Built in.
- **Viz Artist 3**: Built Ins -> Geom Plugins -> Maps-Adv.

The 3DBorderControl plug-in is used to control the attributes of a group of 3DBorder objects. The plug-in controls the applied material, border width, edge softness and visibility.
Chapter 11: Maps Plug-ins

Note: The 3DBorderControl plug-in does not build the 3DBorder objects. The controlled 3DBorder objects should be built before the 3DBorderControl is used.

This section contains information on the following topics:
- 11.3.1 Plug-in Description

11.3.1 Plug-in Description

The 3DBorderControl plug-in has two modes: Control for defining the control mode and Width for setting the border parameters.

- **Container**: Placeholder for the top container of the 3DBorder objects. All controlled 3DBorder objects must reside directly under the top container. Any lower level containers will not be effected.

This section contains information on the following topics:
- Control
- Width

Control

Figure 47: Control mode Level, 3D Border Control editor

- **Control Mode**: Defines how the objects will be grouped when controlled by the 3DBorderContol plug-in. When set to Level, the 3DBorder objects will be grouped by their data type (that is country, region and sub–region).
- **Draw**: Defines what data types will be drawn. 3DBorder objects with other data types will not be switched off:
 - **Country**: Shows 3DBorder objects displaying country borders only.
 - **Region**: Shows 3DBorder objects displaying region and sub region borders only, according to the user selection. Available options are; **Region** (draws region borders), **Sub–Region** (draws sub–region borders) and **Both** (draws both region and sub–region borders).
 - **All**: Draws all border types (that is country, region and sub–region).
Figure 48: Control mode Group, 3D Border Control editor

Group: Defines the group number that will be visible and controlled by the 3DBorderControl plug-in. Groups are defined in the 3D Border plug-in in the Advanced tab’s Set Groups parameter.

Width

Figure 49: Width, 3D Border Control editor

- **Fixed (Pixels)**– Uses a fixed width when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.
 - **Width (Pixels)**: Sets the line width in pixels.
 - **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
- **Scaling**: When selected, line width will vary according to the camera distance from the map. Available parameters that allow the user to set the line attributes are Width, Minimum Width, Maximum Width, Minimum Draw Width and Fade Edge.
 - **Width (Meters)**: Sets the line width in meters on the map. The closer the camera to the map, the wider the line will be drawn.
 - **Minimum Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Width value, then the Minimum Width value will be used.
 - **Maximum Width (Pixels)**: Sets the maximal line width in pixels. This value will be used when the camera distance is small and the line width should have been larger than the Maximum Width value (in pixels).
 - **Minimum Draw Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Draw Width value, and larger than the Minimum Width parameter, then the line will not be drawn.
• **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.

• **Fixed (Mm)**: Uses a fixed width, in Viz units, when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.

 • **Width**: Sets the line width in pixels.

 • **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.

11.4 3D Border Manager

The plug-in can be found in the following folders:

• **Viz Artist 2**: Function -> Maps-Man.
• **Viz Artist 3**: Built Ins -> Function -> Maps-Man.

The 3DBorderManager plug-in is used for creating 3D Border objects based on shape files. The plug-in uses a 3D Border design to create borders according to the defined settings.

This section contains information on the following topics:

• **Plug-in Description**
11.4.1 Plug-in Description

Figure 50: Target set to Container, 3D Border Manager editor

- **Design**: Sets the 3D Border design container that is used for building lines. The design container should be built with a 3D Border object and a material. No special naming convention is required.
- **Target**: Defines the container to be used as the parent container for the border containers:
 - **Me**: The 3D Border objects will be built under the current container (holding the 3D Border Manager plug-in).
 - **Next**: The 3D Border Objects will be built under the next container (next container in the tree and at the same level as the 3D Border Manager container).
 - **Down**: The 3D Border objects will be built under the first child container.
 - **Container**: The 3D Border objects will be built under the container dragged into the Target container placeholder.
- **Target Container**: Specifies the container that will hold all the 3DBorder objects.
- **Shape File**: Defines a path to the shape file (*.shp), containing the border definitions. Shape files are bought from vendors specialized in Geographic Information System (GIS) and holds the actual shape data; polygons, splines, and others. Note that shape files must be stored in individual folders.
- **Simplify Threshold**: Sets the detail reduction factor for the shape borders.
- **Persistent Data**: Defines if the data will be removed from Viz memory when the scene is closed or not. When enabled references are kept, and load time is quicker.
- **Border Type**: Defines which border type will be associated with the created objects. If Advanced is selected, additional parameters will be enabled allowing the configuration of border type according to the data associated with the shape file.
- **Border’s Type**: Specifies the column name that holds each border type.

- **Country ID, Region ID, Sub Region ID and Coastline ID**: Specifies the string
in the database file (*.dbf) that matches to each type (e.g. Country, Region and so on).

- **Clear and Build**: Removes all child objects of the target container and re-builds the objects, using the plug-in settings.
- **Clear Target Tree**: Removes all child objects of the target container.

11.5 3D Line Shader

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Shader (button) -> Maps.
- Viz Artist 3: Built Ins -> Shader -> Maps.

The 3DLineShader is used by the 3D Map Setting plug-in to draw the borders using the parameters set in the various 2D Label plug-ins. The plug-in has no parameters and it is added automatically when adding a 2D Label object to the scene tree.

11.6 3D Map Setting

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Scene (button) -> Maps.
- Viz Artist 3: Built Ins -> Scene Plugins -> Maps.

The 3DMapSetting plug-in is a scene plug-in used for managing borders data from the server. The border data is retrieved from the Viz World Server (WoS), according to the setting in the 3DMapSetting plug-in, is used for applying a graphic design to the borders in the map, drawn by the 2D Label plug-ins.

Note: Scene plug-ins are added under the Scene Settings’ Plug-in tab.

This section contains information on the following topics:

- **11.6.1 Plug-in Description**

11.6.1 Plug-in Description

The 3DMapSetting plug-in has two sections of parameters (General and Border Data) and a 3D Line button.

This section contains information on the following topics:
General

Figure 51: General, 3D Map Setting editor

- **Geographic Container**: Draws the border of the selected map. Drag the CWMClient container that defines the map area to the container place holder.
- **Culling Threshold**: Sets the size of polygons to be culled (not rendered). It is generally better to cull small polygons as they may not look good when rendered.
- **Polygon Quality**: Defines the quality of the drawn border lines. The higher the quality the smoother the line will be.
- **Polygon Quality Factor (%)**: Enables the user to change the automatic polygon quality levels by setting a factor that will change the border quality. Values under 100% will decrease the quality of the lines. Values above 100% will increase the quality of the lines.

Border Data

Figure 52: Border data, 3D Map Setting editor

- **World**: Defines if the border data will be fetched for the entire world (country borders) or other data as defined in the Additional Region Data parameter.
• **None**: Retrieves the border data as defined in the *Additional Region Data* parameter.
• **Full**: Retrieves the country borders data for the entire world (country borders only).
• **Additional Region Data**: Defines additional border data that will be retrieved from the server with the data defined in the *World* parameter. The additional data will be limited to the selected region in the *Region List* parameter.
 • **None**: No additional data will be used.
 • **Country**: Country borders data in the selected region area will be used.
 • **Region**: Region borders data in the selected region area will be used.
 • **Sub-Region**: Sub-Region borders data in the selected region area will be used.
• **Region List**: Defines an area of the world for which the additional region data will be retrieved from the server. The parameter limits the data size retrieved from the server.
• **Rebuild**: Retrieves the information from the Viz World Server (WoS).
• **Rebuild (Force New)**: Recreates the data on the Viz World Server (WoS) and saves it to the cache folder, even if cached data already exists.

Window

Figure 53: Window, 3D Map Setting editor

- **Window Active**: Enables the user to define an area in the renderer as an active window. All maps data created by the Viz World Client will be redrawn to fit into the defined window. When set to ON additional parameters will be enabled:
 - **Window Mode**: Defines the source of the window aspect: *Manual* sets the window aspect to be user defined, *Camera* sets the window aspect to be the same as the render window, and *Image* sets the window aspect to be the same as the the image aspect of the map.
 - **Window Units**: Defines the units used to set the window size and position. When set to Percents, the window size will be calculated as the defined percentage of the Viz render window size. The window position will be calculated as the defined offset percentage of the render window.
 - **Window Width**: Defines the width of the window in percents or pixels.
 - **Window Height**: Defines the height of the window in percents or pixels. This parameter is enabled only if window mode is set to Manual.
• **Window Center Offset X**: Defines the X position (percents or pixels) of the window in relation to the render window (center to center).

• **Window Center Offset Y**: Defines the Y position (percents or pixels) of the window in relation to the render window (center to center).

• **Control Win Mask**: Defines if a WindowMask plug-in (added to the map) will be controlled by the 3DMapSettings plug-in to mask the defined window or not.

• **Window Mask Scale**: Defines the scale of the mask over the defined window.

• **Show Debug Window Mask**: When enabled (on), a red rectangle around the defined window will be displayed.

GUI

GUI defines general parameters for controlling container names and container colors in the Viz GUI (effecting the Viz scene tree display), and the creation of Control Channels from added Viz World Client objects. The Control Channels in Viz are displayed under the Control tab and serve as an index for the scene tree. For additional information about Control Channels please refer to the Viz Artist user guide.

![GUI, 3D Map Setting editor](image)

• **Hops**: Defines GUI parameters for hop containers in the scene tree:
 - **None**: No control channel or name conversion will be applied to the hop containers.
 - **Control**: Only a control channel will be added for the hop containers.
 - **Name**: The created hop containers will be named Hop-1, Hop-2, etc., according to the hop point selected in the NavFinder plug-in. No control channel will be added.
 - **Full**: A control channel will be added for every hop container and the hop containers will be renamed Hop1, Hop2, etc.

• **Designs**: Defines GUI parameters for any design containers (region designs, road designs, label designs, and so on) in the scene tree:
 - **None**: No control channel or name conversion will be applied to the design containers.
 - **Control**: Only a control channel will be added for the design containers used in the scene. The containers will not be renamed.
 - **Name**: The design containers (dragged to the CWM Client plug-in) will be renamed Label-Designs, Region-Designs, and so on. No control channel will be added.
• **Full**: A control channel will be added for every design container and the design containers will be renamed.

• **Holders**: Defines GUI parameters for any object holder containers (regions, roads, labels, and so on) in the scene tree:
 - **None**: No control channel or name conversion will be applied to the holder containers.
 - **Control**: Only a control channel will be added for the holder containers used in the scene. The containers will not be renamed.
 - **Name**: The holder containers (dragged to the CWM Client plug-in) will be renamed Label-Holder, Region-Holder, and so on. No control channel will be added. If the holder container is dragged to a hop CWM Client, it will be named with a suffix indicating the hop number: Label-Holder-H1, Label-Holder-H2, and so on.
 - **Full**: A control channel will be added for every design container and the holder containers will be renamed.

• **Hops Color**: Sets the color index, as defined in the User Interface parameter in Viz Config (Viz 3 only), that will be used for the Hop containers in the scene tree.

• **Design Color**: Sets the color index, as defined in the User Interface parameter in Viz Config (Viz 3 ONLY), that will be used for the design containers in the scene tree.

• **Holder Color**: Sets the color index, as defined in the User Interface parameter in Viz Config (Viz 3 ONLY), that will be used for the generated objects holder container in the scene tree.

Tip: For more information about Viz Config and its configuration options, see the Viz Engine Administrator’s Guide.

11.7 3D Line

The plug-in can be found in the following folders:

- Viz Artist 2: Object -> Built in.
The 3DLine plug-in has several graphic uses:

- Drawing shape lines created in Viz World Editor (WoC editor) when selecting a map. A line design is created in the hierarchy and defined in the CWM Client plug-in (see 3D Objects and Shapes, CWM Client editor).
- Drawing a line between label locations, defined in the WoC editor, from the first label in the list to the last label in the list. Labels in the CWM Client plug-in must be enabled when using this mode.
- Drawing a line along hop points defined in a Navigator scene. The line will follow the path of the Navigator animation between the hops.
- Drawing a line using a Long/Lat coordinates list. The line will be drawn from the first Long/Lat pair to the last.

Note: When adding a 3DLine plug-in to a container, a 3D Line Shader plug-in will be added automatically to the same container. The 3D Map Setting plug-in has to be added manually when using the 3DLine plug-in with Navigator plug-in.

Note: Some of the uses of 3Dline plug-in as described above requires the use of the Label Manager plug-in in the scene.

This section contains information on the following topics:
- 11.7.1 Plug-in Description
See Also
- 11.9 3D Line Manager
- 11.5 3D Line Shader
- 11.6 3D Map Setting
- 11.30 Label Manager
- 11.42 Navigator

11.7.1 Plug-in Description

The 3D Line plug-in has four sections of parameters, and a Rebuild button.

This section contains information on the following topics:
- Width
- Outline
- Effect
- Advanced
- Rebuild button

Width

Figure 56: Width, 3D Line editor

<table>
<thead>
<tr>
<th>Width</th>
<th>Outline</th>
<th>Effect</th>
<th>Control</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (Meters)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Width (Pixels)</td>
<td>0.0001</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Width (Pixels)</td>
<td>-4.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Draw Width (Pixels)</td>
<td>2.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fade Edge (%)</td>
<td>0.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebuild</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Width parameters, Fixed (Pixels) and Scaling, will effect the line object only if the scene uses a Navigator plug-in. In case of a static map, use the Fixed (Mm) to set the line width.

- **Fixed (Pixels)**- Uses a fixed width when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.
- **Width (Pixels)**: Sets the line width in pixels.
- **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
- **Scaling**: When selected, line width will vary according to the camera distance from the map. Available parameters that allow the user to set the line width.
attributes are Width, Minimum Width, Maximum Width, Minimum Draw Width and Fade Edge.

- **Width (Meters)**: Sets the line width in meters on the map. The closer the camera to the map, the wider the line will be drawn.
- **Minimum Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Width value, then the Minimum Width value will be used.
- **Maximum Width (Pixels)**: Sets the maximal line width in pixels. This value will be used when the camera distance is small and the line width should have been larger than the Maximum Width value (in pixels).
- **Minimum Draw Width (Pixels)**: Sets the minimal line width in pixels. If the calculated line width (according to the Width parameter) is smaller than the Minimum Draw Width value, and larger than the Minimum Width parameter, then the line will not be drawn.
- **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.
- **Fixed (Mm)**- Uses a fixed width, in viz units, when drawing the line. This parameter will cause the line to maintain the same width regardless of camera position/distance. Available parameters are Width and Fade Edge.
 - **Width**: Sets the line width in pixels.
 - **Fade Edge (%)**: Sets the percentage of softness added to the edges of the line. When set to 0% the line edges will be sharp and when set to 100% the edges will be soft.

Outline

Figure 57: Outline, 3D Line editor

<table>
<thead>
<tr>
<th>3DLine Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>Outline Width (%)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>Outline Fade (%)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>Outline Color</td>
</tr>
<tr>
<td>100.0</td>
</tr>
<tr>
<td>Rebuild ?</td>
</tr>
</tbody>
</table>

- **Outline**: Enables (*On*) or disables (*Off*) outline.
 - **Outline Width (%)**: Sets the width of the outline, as a percentage of the border width, where 0% is the border width.
 - **Outline Fade (%)**: Sets the percentage of softness applied to the outline edges.
 - **Outline Color**: Sets the color of the outline and the Alpha value of the outline.

Note: The color palette is visible in all tabs of the editor, but it will only effect the outline color.
Effect

The Effect tab is used for creating an animation on the line size. After the line object is created it can be animated by setting keyframes on the length parameter.

Figure 58: Effect, 3D Line editor

- **Length**: Sets line length, where 100 is 100% of the line length.
- **Fade**: Defines the softness that will be added to the line edge as the length animation advances. When length is 100 the end of the line will not be affected by the Fade parameter.
- **Lock To Navigator**: When using the 3D Line plug-in with a Navigator plug-in, the line will animate with the Navigator animation. The starting point of the line will be the first hop location and the ending point of the line will be the last hop position. The line will animate as the hop animations are playing.

Control

The Control tab is used for defining external control parameters. External control is done by the 3DLineControl plugin.

Figure 59: Control, 3D Line editor

- **Control Mode**: Defines if the object is externally controlled or not.
- **Set Groups**: Defines the groups that the current 3DLine object is a member of. The same group names should be used in the 3DLineControl.
- **Shared Memory**: What type of shared memory (viz 3 only) can be used in order to control the lines.
- **Identifier**: Shared memory name and general purpose Identifier for this line. Can be used to control the line or to share a display list data between scenes.
Advanced

Figure 60: Advanced, 3D Line editor

<table>
<thead>
<tr>
<th>3DLine Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap Edges</td>
</tr>
<tr>
<td>- None</td>
</tr>
<tr>
<td>- Round</td>
</tr>
<tr>
<td>- Square</td>
</tr>
<tr>
<td>- Feather</td>
</tr>
<tr>
<td>Wireframe</td>
</tr>
<tr>
<td>- off</td>
</tr>
<tr>
<td>Height Offset</td>
</tr>
<tr>
<td>- 8.0</td>
</tr>
<tr>
<td>Line Offset</td>
</tr>
<tr>
<td>- -1.0</td>
</tr>
<tr>
<td>Split International Date Line</td>
</tr>
<tr>
<td>- Off</td>
</tr>
<tr>
<td>Update Texture Mapping</td>
</tr>
<tr>
<td>- Disabled</td>
</tr>
<tr>
<td>- Enabled</td>
</tr>
<tr>
<td>Low Angle Compensation</td>
</tr>
<tr>
<td>- Disabled</td>
</tr>
<tr>
<td>- Enabled</td>
</tr>
<tr>
<td>- Advanced</td>
</tr>
<tr>
<td>Debug</td>
</tr>
<tr>
<td>- off</td>
</tr>
<tr>
<td>Min Angle</td>
</tr>
<tr>
<td>- 55.0</td>
</tr>
<tr>
<td>Max Angle</td>
</tr>
<tr>
<td>- 70.0</td>
</tr>
<tr>
<td>Outline Angle Offset</td>
</tr>
<tr>
<td>- 10.0</td>
</tr>
<tr>
<td>Width Factor (%)</td>
</tr>
<tr>
<td>- 405.0</td>
</tr>
<tr>
<td>Alpha Factor (%)</td>
</tr>
<tr>
<td>- 0.0</td>
</tr>
</tbody>
</table>

- **Cap Edges**: Sets the line's cap shape:
 - **None**: The line edges will not change.
 - **Round**: Adds a filled round shape to the line caps,
 - **Square**: Adds a filled square shape to the line caps,
 - **Feather**: Adds a feather shape to the line caps, An additional parameter will be enabled when Feather is selected: Cap Fade Size.
- **Wireframe**: When enabled (*On*), the 3DLine object will be drawn as a wireframe.
- **Height Offset**: Sets the height offset for the 3D Line object on the map (on the fly).
- **Line Offset**: Sets the line offset for the 3D Line object on the map (on the fly).
- **Split International Date Line**: When enabled (*On*), a line object that crosses the date line will continue from the other side of the map. When disabled (*Off*), it will continue across the date line.
- **Update Texture Mapping**: Should the texture coordinates be updated based on line width.

Note: When enabled, symbols are easier to control, but as line width changes the cause texture changes which might be disturbing.

- **Low Angle Compensation**: Lines become too thin at low camera angles as a result of the perspective distortion. When that happens, there are not enough pixels to support a smooth, antialiased line, and the lines look jaggy and aliased. This mode compensates for that by both widening the lines and applying transparency when they are viewed at too low angles.
- **Debug**: Enables debug messages in the console.
- **Min Angle**: If the angle between the camera and the ground below the line is lower than "Min Angle", then line width and transparency will not be changed.
- **Max Angle**: If the angle between the camera and the ground below the line is higher than "Max Angle", then the line width is increased by the "Width Factor"
and the transparency is scaled by the "Alpha Factor". If the angle is between Min Angle and Max Angle then the width and transparency are interpolated.

- **Outline Angle Offset**: For outline width, apply an offset to the angle calculation in order to make the outlines affected at higher angles than the lines themselves.
- **Width Factor (%)**: A factor for modifying line width when applicable.
- **Alpha Factor (%)**: A factor for modifying line alpha when applicable.

Rebuild

The Rebuild button triggers the plug-in to redraw the lines according to the plug-in parameters. Some parameters are updated as the parameters are changed and do not require a rebuild command but it is good practice to rebuild the lines after setting the parameters.

11.8 3D Line Control

The plug-in can be found in the following folders:
- Viz Artist 2: Object->Built in.

The 3DLineControl plug-in is used for controlling 3D Line object groups. The groups are then controlled in terms of width and color. The groups are derived from the settings in the 3DLine objects.

This section contains information on the following topics:
- **11.8.1 Plug-in Description**

11.8.1 Plug-in Description

Figure 61: Control tab, 3DLineControl plug-in.

- **Container**: Sets the top container above the controlled 3DLine objects.
- **Group**: Defines the controlled group number. A group is defined in every 3DLine object.
Figure 62: Width tab, 3DLineControl editor

- **Width**: Select one of the options to control the line width, Fixed (in pixels or in mm), or scaling.
 - **Width**: When fixed width is selected (pixels or mm), set the width value. Fixed width the line will maintain the width value through all camera zoom range. When Scaling is selected, width is set in actual kilometers and the line width will be calculated according to the camera zoom.
 - **Minimum Width (Pixels)**: Set the minimal value of line width in pixels. this value will be used if the calculated width according to the width parameter is smaller than the minimum width value (when zooming far out).
 - **Maximum Width (Pixels)**: Set the maximal value of line width in pixels. this value will be used if the calculated width according to the width parameter is larger than the maximum width value (when zooming in).
 - **Minimum Draw Width (Pixels)**: This value defines the minimal line width drawn.
 - **Fade Edge (%)**: Defines the edge fade width as a percentage of the line width.

11.9 3D Line Manager

The plug-in can be found in the following folders:

The 3DLineManager plug-in is used for controlling and creating 3D Line objects. The plug-in uses a 3D Line design to create lines according to the defined settings.

This section contains information on the following topics:
- 11.9.1 Plug-in Description
11.9.1 Plug-in Description

- **Design**: Sets the 3D Line design container that is used for building lines. The design container should be built with a 3D Line object and a material. No special naming convention is required.
- **Target**: Defines the container to be used as the parent container for the line containers:
 - **Me**: The 3D Line objects will be built under the current container (holding the 3D Line Manager plug-in).
 - **Next**: The 3D Line objects will be built under the next container (next container in the tree and at the same level as the 3D Line Manager container).
 - **Down**: The 3D Line objects will be built under the first child container.
 - **Container**: The 3D Line objects will be built under the container dragged into the Target container place holder.

![Figure 63: Target set to Container, 3D Line Manager editor](image)

- **Data Source**: Defines the source from which the 3D Line objects will be created:
 - **Navigator**: A 3D Line object will be created using the hop locations defined in the Navigator plug-in. The line will start at the first hop location and end at the last hop location.

 Note: When using the Navigator as the data source, the 3D Line Manager should reside under the Navigator container.

 - **Command**: The 3DLine object will be created from a list of Long/Lat pairs defined by the user.

 Example: MyLine: 0,0 0,50 30,30

 - **WoC editor Labels**: The 3DLine object will be created from the selected labels in the Viz World Client (WoC editor). The line will start at the first label location in the list (the list order in the WoC editor is important) and end at the last label location.
11.10 3D Region

The plug-in can be found in the following folders:
- Viz Artist 2: Object -> Built in.

The 3DRegion plug-in is used for applying a graphic design to the selected regions in the map. The designs are defined in the scene and linked in the CWMClient plug-in, to create the regions received from the maps server.

This section contains information on the following topics:
- 11.10.1 Plug-in Description

11.10.1 Plug-in Description

The plug-in has four different plug-in editor views; General, Region, Sub Regions and Advanced.

The General parameters editor includes quality and performance parameters.

The Region parameters editor includes the object’s graphic properties.
The **Sub Regions** parameters editor includes the object’s sub regions graphic properties. This tab is enabled when the Sub Regions parameter, under the Advanced tab’s Data settings, is enabled (**On**).

The **Advanced** parameters editor define plug-in behavior in special operation scenarios.

This section contains information on the following topics:
- General
- Region
- Sub Regions
- Advanced

General

Figure 65: General, 3D Region editor

- **LOD mode**: Sets the level of details (LOD). When set to auto, the plug-in will manage the level of details according to the camera distance from the region object. When set to manual, the level of details will not change when the camera moves, and will remain fixed. When set to Manual, the **Polygon Quality** parameter will be enabled.
 - **Polygon Quality**: Sets the quality of the generated region object.
 - **Highest**: Sets the highest level of detail. This option will use more polygons to build the region object but will have an effect on performance when many regions are selected.
 - **High**: Sets a high level of detail.
 - **Medium**: Sets a medium level of detail.
 - **Low**: Sets a low level of detail.
 - **Lowest**: Set the lowest level of detail. This option will enable better performance when adding a lot of regions, but will look poor when moving the camera closer to the region objects.
 - **Geo Reference**: When enabled (**On**), references the region object to the map above the 3DRegion container. If disabled (**Off**), the longitude and latitude
numbers will be transferred to the Viz Artist position X, Y values. The object will be free from referencing.

- **Center X Y:** Defines where the axis of the region object will be placed: if Region is selected then the axis center will be the middle of the region object. If Map is selected the axis will be placed in the middle of the reference map.
- **Sensible Culling:** Defines whether to cut off areas that belong to the selected region but are geographically remote. If set to Off, all marked regions will be built. Use this feature to improve performance (usually set to On).
- **Culling Threshold:** Defines the level of details displayed in the regions. The higher the threshold value, the less details will be drawn (that is small islands, small regions, and so on).
- **Use Cache:** When enabled (On), saves the objects to a cache folder. When using cache, the generated objects and parameters are saved in a cache folder and when switching between parameters the regions are not rebuilt, but taken from the cache (if they exist). If no (Off) cache is used, every change in the plug-in interface will trigger a rebuild of the region objects.

Region

Figure 66: Region fill, 3D Region editor

- **Fill:** Fill enables the user to add a region object to the map, and if fill is applied, how regions are built on the map (either flat on the map (no width) or extruded).
 - **None:** No region object will be added to the map.
 - **Extrude:** Regions will be added and extruded over the map. When extrude is used, additional parameters will be enabled. Include Bottom builds the bottom of the region when extruded.
 - **Flat:** Adds a flat object (Extrude=0).
- **Center Z:** Sets the Z axis location of the region object, with relation to the map: bottom, center or top.
- **Type:** Defines how the Height parameter will be calculated.
 - **Absolute Height:** Defines the regions extrusion height value as Viz units.
• **Relative Height**: Defines the regions extrusion height value as a percentage of the regions size.

Figure 67: Region border, 3D Region editor

The border parameters define if a border will be drawn around the region objects, border color, width and the alpha. If the 3D Region object is in Controlled Mode (On) the border properties parameters will be disabled.

- **Borders**: Defines if the object will be drawn with a border. When enabled (On), the border will be drawn and the border properties parameters will be enabled.
- **Line Width**: Sets the number of GL lines for the border width.
- **Line Color**: Uses the color pallet to set the border color.
- **Alpha**: Sets the alpha value for the border

Note: The color palette is visible in all 3D Region editors but it will only affect the border color.

Sub Regions

The Sub Regions parameters are functionally identical to the ones described for Regions; however, they apply to sub regions.
Advanced

Figure 68: Advanced data, 3D Region editor

The *Data* tab defines how data will be processed.
- **Sub Regions** – Defines if the object will use the sub regions data in the drawn object. When enabled (*On*), the sub regions data will be reflected in the geometry and the Sub Regions tab will display the sub regions parameters.
- **Controlled Mode**: Defines if the 3D Region object will be controlled by a 3D Region Control plug-in in the hierarchy or not.
- **Render Mode**: Defines if the 3D Region object will be rendered by Viz or directly in OpenGL.

Figure 69: Advanced election, 3D Region editor

The *Election* tab has one parameter, Command, containing text with region information used for elections. If Sub Regions is enabled (*On*), additional parameters will be enabled.
- **Print SubRegion Data**: Prints the data in the Viz console.
- **Save Sub Regions Strings**: Saves back the sub regions data to the file.
- **Save Sub Region**: Saves the current specific sub region information back to the file.
- **Rebuild**: Rebuilds the region objects from the file.
The Alpha tab is an advanced tab used for elections mainly. Alpha tab parameters will be enabled when the Sub Regions parameter is enabled (On). The parameters will affect the object only when an Alpha plug-in is added to the object and the 3D Region plug-in is in Controlled Mode. These parameters define what part of the region data will be affected by the alpha plug-in.

- **Draw**: Defines what part of the object will be affected by the alpha settings.
 - **All**: Both region and sub regions will be drawn in the object.
 - **Region**: Draws only the region.
 - **Sub Region**: Draws only the sub regions.
 - **None**: Sets region and sub regions to be transparent.
- **Region Alpha Mode**: Defines what part of the data will be affected by the alpha plug-in.
 - **Region**: Affects only the region areas.
 - **Sub Regions**: Affects only sub region areas.
 - **None**: No data will be affected by the alpha plug-in.
- **Border Alpha Mode**: Defines what part of the border data will be affected by the alpha plug-in.
 - **Region**: Affects only the region borders.
 - **Sub Regions**: Affects only sub region borders.
 - **None**: No data will be affected by the alpha plug-in.
The **Draw** tab defines advanced parameters for drawing the region objects.

- **Day Line Mode**: Relates to countries that reside on the 180 and −180 longitude line when using flat maps.
 - **United**: Draws the regions together.
 - **None**: Draws the regions on both sides of the map.
- **Border Data**: Defines the source data of the borders.
 - **Polygon**: Draws borders using polygon data.
 - **Border**: Draws borders using border data (higher memory consumption).
- **Border Quality**: Sets the required border quality.
- **Wireframe**: Draws a wireframe of the object.

Note: The color palette is visible in all **3D Region** editors but it will only affect the border color.

11.11 **3D Region Control**

The plug-in can be found in the following folders:

- **Viz Artist 2**: Object → Built in.
- **Viz Artist 3**: Built Ins → Geom Plugins → Maps–Adv.
The **3D Region Control** plug-in is used to control one or more **3D Region** objects and changing and applying graphic properties to the objects.

Typical use of the 3D Region Control is when producing election graphics where it is useful to distinguish regions by for example color.

This section contains information on the following topics:
- 11.11.1 Plug-in Description

11.11.1 Plug-in Description

The **3D Region Container** is a container placeholder for the container holding the region objects.

- **3DRegion Container**: Container place holder for the container holding the region objects.
• **Control Mode:** Defines the data segment of the object that will be controlled. Select Region or Sub Region and then select what part of the region/sub-region to control:
 - **Region/Fill:** Enables control of the region’s properties as defined in the Fill Mode parameter.
 - **Region/Border:** Enables control of the region's border properties as defined in the Borders and Width parameter.
 - **Sub Region/Fill:** Enables control of the sub region’s properties as defined in the Fill Mode parameter.
 - **Sub Region/Border:** Enables control of the sub region’s border properties as defined in the Borders and Width parameter.

• **Fill Mode:** Defines the fill of the regions.
 - **Interpolation (3):** Sets three colors that will define the regions color range. The regions color will be derived from the range of colors and the number of regions.
 - **Interpolation (2):** Sets two colors that will define the regions color range. The regions color will be derived from the range of colors and the number of regions.
 - **Group:** Controls the fill of all the 3DRegion objects under the defined 3DRegions Container (apply the material added to the 3DRegionControl container).
 - **Selected Region:** Controls the selected regions on the map only.

• **Apply Sender Matrix:** Applies a matrix to the regions. Available options are None, Multiply, Translate, Scale and Full.
 - **None:** Uses the 3D Region matrix.
 - **Multiply:** Uses the 3D Region matrix multiplied by the 3D Region Control matrix.
 - **Translate:** Uses only the translated part (x, y and z position) of the 3D Region Control matrix.
 - **Scale:** Uses the scale part (x, y and z scaling) of the 3D Region Control matrix.
 - **Full:** Uses the 3D Region Control matrix.

• **Apply On:** Applies the sent matrix on all regions or only the selected sub regions.
 - **Sub Region Borders:** Enables control of the sub region borders properties as defined in the Sub Region Borders parameter.
 - **All:** Controls all borders of the 3DRegion objects under the 3DRegion Container.
 - **Selected:** Controls the borders of the 3DRegion objects that are the selected regions in the map.
 - **Width:** Defines the border width in pixels.

Note: The color palette is visible in all tabs but it will affect the last selected color parameter in the UI.
11.12 3D Region Manager

The plug-in can be found in the following folders:
• Viz Artist 2: Function -> Container (button) -> Maps-Man.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps-Man.

The 3DRegionManager plug-in is used to create sub regions of a selected region on the map, using a 3D Region design. The plug-in receives the region name and gets all the sub regions of that region from the server or a shape file. The 3D Region design is duplicated for each sub region and displayed on the map.

Figure 74: Regions and sub regions, 3D Region Manager

This section contains information on the following topics:
• 11.12.1 Plug-in Description
11.12.1 Plug-in Description

Figure 75: Target set to Me, 3D Region Manager editor

- **Design**: Sets the region design container that is used for building sub-regions. The design container should be built with a 3D Region object and a material. No special naming convention is required.
- **Target**: Defines the container to be used as the parent container for the sub-regions containers:
 - **Me**: Builds the 3DRegion objects under the current container (holding the 3DRegionManager plug-in).
 - **Next**: Builds the 3DRegion objects under the next container (next container in the tree and at the same level as the 3D Region Manager container).
 - **Down**: Builds the 3DRegion objects under the first child container.
 - **Container**: Builds the 3DRegion objects under the container dragged into the “Target” container place holder.

Figure 76: Target set to Container, 3D Region Manager editor

- **Build Region**: Defines the source for which the 3DRegion objects will be created.
 - **Local**: Builds the 3DRegion objects for the container that the 3D Region Manager is applied to. The container must be a 3D Region object for the sub-regions to be built for the defined region.
 - **Selection**: Builds the sub-regions or regions for selected regions. Press the Select Region button to select the regions to be built.
• **Border Visible Filter**: Sets which borders should be cropped to map. Any border lower or equal to the selection will be cropped to the map. Available options are Country, Region and None.

• **Scan**: Defines what regions to display.
 - **Selected**: Displays only the selected regions, selected by pressing the Select Region button.
 - **Recursive**: Displays all selected regions and their sub regions.

• **Select Region**: Opens the Viz World Editor (WoC editor), enabling the selection of regions to be used in Selection mode.

Figure 77: Shaped Regions set to Merge, **3D Region Manager** editor

- **Shape Regions**: Defines how the regions will be built. Available options are Merge, Split and Advanced.
 - **Merge**: Creates all regions in the file as one object.
 - **Split**: Creates all regions in the file as separate objects.

- **Shape File**: Defines a path to the shape file (*.shp), containing the region definitions. Shape files are bought from vendors specialized in Geographic Information System (GIS) and holds the actual shape data; polygons, splines, and others for the container that the **3D Region Manager** is applied to. The container must be a **3D Region** object for the sub regions to be built for the defined region. Note that shape files must be stored in individual folders.
Figure 78: Shaped Regions set to Advanced, 3D Region Manager editor

- **Advanced**: Enables the additional parameters Conversion File, State Column and Name Column. **Conversion File** defines a file for converting regions indexes into region names (*.txt file). **Parent Id Column, Parent Name Column** and **Names Column** refer to columns in the database (*.dbf) file that comes with the shape file. The database files describes what is attached on the shape file. Note that database files can be opened with Microsoft Office Excel.

- **Shape File**: Defines a path to the shape file (*.shp), containing the region definitions. Shape files are bought from vendors specialized in Geographic Information System (GIS) and holds the actual shape data; polygons, splines, and others. Note that shape files must be stored in individual folders.

- **Prepare Cache Files**: Instead of building large amounts of regions from a shape file (which may overload the system), pre-creation of the cache files and then building the required regions only (directly from the cache files) will minimize the memory usage.

Figure 79: Build Region set to Command, 3D Region Manager editor

- **Command**: Builds a 3DRegion object from the specified command. The command defines the region coordinates using pairs of longitude and latitude values. The command format is as follows:

 `<3DRegionContainerName>`: `Long1,Lat1 Long2,Lat2...`
Figure 80: Build Region set to Region Id, *3D Region Manager* editor

- **Region ID:** Enables the user to show a specific region by region ID after having prepared the cache files.
- **Region Id:** Sets the region’s ID for the required region.
- **Clear and Build:** Deletes all previously built objects and rebuilds the regions according to the current settings.
- **Add To Existing:** Builds the new objects without deleting the old 3D Region objects from the hierarchy.
- **Clear Target Tree:** Removes all objects built by the plug-in from the Viz scene hierarchy.

11.13 3D Roads

![3D Roads](image)

The plug-in can be found in the following folders:
- Viz Artist 2: Object -> Built in.

Figure 81: 3D Roads example

This section contains information on the following topics:
- **11.13.1 Plug-in Description**

11.13.1 Plug-in Description

The plug-in has three different plug-in editor views; Data, Width and Outline.
The **Data** parameters editor defines what type of roads will be drawn by the selected 3D Roads object. Select one or more types of roads to be displayed, using the plug-in graphic properties.

The **Width** parameters editor defines the width of the roads drawn by the plug-in.

The **Outline** parameters editor defines the objects outline properties and behavior.

This section contains information on the following topics:
- Data
- Width
- Outline

Data

Figure 82: Data, 3D Roads editor

- **Freeways/Motorways, Primary, Main, Secondary and Other Roads**: When enabled *(On)*, the plug-in will draw roads rated according to the selection in the loaded roads data.
- **Major and Other Railways**: When enabled *(On)*, the plug-in will draw railways rated according to the selection in the loaded railways data.
- **Wireframe**: Displays the road as wireframe.
- **Height Offset**: Offsets the borders from the map (on the fly).
Width

Figure 83: Fixed width, 3D Roads editor

- **Width**: Selects how the road width will be calculated.
- **Fixed (Pixels)**: When set to Fixed the road will maintain a fixed width during camera zoom movements. Available options are Width (pixels) and Fade Edge (%).
 - **Width (Pixels)**: Sets the width of the roads in number of pixels.
 - **Fade Edge (%)**: Sets the percentage of softness applied to the road edges.

Figure 84: Scaling width, 3D Roads editor

- **Scaling**: When set to Scaling the road width will vary according to the camera zoom movements.
 - **Width (Meters)**: Sets the physical road width (in Meters). This value is translated into drawn pixels according to the camera zoom position and the size of the map.
 - **Minimum Width (Pixels)**: Sets the minimal size that the roads will be drawn. If the calculated road size in pixels is lower than the minimum width, the road will not be drawn.
 - **Maximum Width (Pixels)**: Sets the maximal size that the roads will be drawn. If the calculated road size in pixels is higher than the maximum width, the road width will be set to the maximum width.
• **Minimum Draw Width (Pixels)**: Sets the minimal size that the roads will be drawn. When zooming into an area, this will be the point where the roads begin to fade in and be drawn over the map.

• **Fade Edge (%)**: Sets the percentage of softness applied to the road edges.

Figure 85: Fixed width, 3D Roads editor

• **Fixed (mm)**: When set to *Fixed (mm)* the road will maintain a fixed width during camera zoom movements. Available options are Width (millimeters) and Fade Edge (%).
 - **Width**: Sets the width of the roads in number of millimeters.
 - **Fade Edge (%)**: Sets the percentage of softness applied to the road edges.

Outline

Figure 86: Outline, 3D Roads editor

• **Outline**: Selects one of the options for adding outline to the roads. Available options are None, Master, Slave and Stand Alone.
 - **None**: No outline will be added to the roads drawn by the plug-in.
 - **Master**: Sets the plug-in as the master plug-in for outline behavior. Other 3D Roads plug-ins can be set as clients of this plug-in. The same outline attributes will be applied to roads drawn by the master plug-in and by all other slave plug-ins. When selected, available additional parameters are Outline Width (%), Outline Fade (%) and Outline Color.
 - **Outline Width (%)**: Sets the width of the outline, as a percentage of the road width, where 0% is the road width.
Chapter 11: Maps Plug-ins

11.14 3D Road Manager

The plug-in can be found in the following folders:

The 3DRoadManager plug-in is used for creating 3D Roads objects. The plug-in uses a shape file design to create roads according to the defined settings.

This section contains information on the following topics:
- 11.14.1 Plug-in Description

11.14.1 Plug-in Description

- **Roads Mode**: Applies one set of road design for all roads (Global), or uses a design per CWMClient (Design).
- **Design**: Sets the doards design container that is used for building border data from a shape file. The design container should be built with a 3DBorder object and a material. No special naming convention is required.
• **Target**: Defines the container to be used as the parent container for the road designs. **Me** builds the 3DRoads objects under the current container (holding the 3DRoads Manager plug-in). **Next** builds the 3DRoads objects under the next container (next container in the tree and at the same level as the 3DBorderManager container). **Down** builds the 3DRoads objects under the first child container. **Container** builds the 3DRoads objects under the container dragged into the **Target** container place holder.

• **Target Container**: Specifies the container that will hold all the 3DBorder objects.

• **Source**: Select street/road source. Available options are: Viz World Editor (WoC editor) using the CWM client plug-in to connect to the map server, or from a shape file that contains street data.
 - **Select Streets**: Opens Viz World Editor (WoC editor).
 - **Shape File**: Defines a path to the shape file (*.shp), containing the border definitions. Shape files are bought from vendors specialized in Geographic Information System (GIS) and holds the actual shape data; polygons, splines, and others. Note that shape files must be stored in individual folders.
 - **Sort Roads By**: Sets the loaded roads from the shape file in a category.
 - **Category** enables the user to select one predefined category of street data. Available **Road Types** are Freeways, Primary, Main, Secondary and Other.
 - **Advanced** splits the data into different categories using specific string types. **Road Type Column** specifies a column name that holds each road category. **Freeways/Motorways, Primary Roads, Main Roads, Secondary Roads** and **Other Roads** specify what string in the database file (*.dbf) that matches the road type.

• **Simplify Threshold**: Sets the detail reduction factor for the shape of the roads.

• **Persistent Roads**: Defines if the roads data is removed from Viz memory when the scene is closed or not.

• **Sort Roads By**: Defines which road type will be associated to the created objects. If Advanced is selected, additional parameters will be enabled allowing the configuration of road types according to the data associated to the shape file.

Figure 87: Category, 3D Road Manager editor

<table>
<thead>
<tr>
<th>Roads Mode</th>
<th>Design</th>
<th>Target</th>
<th>Target Container</th>
<th>Persistent Roads</th>
<th>Source</th>
<th>Shape File</th>
<th>Simplify Threshold (Meters)</th>
<th>Sort Roads By</th>
<th>Road Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

• **Category**: Enables the selection of road types. Available options are: Freeways, Primary Main, Secondary, Other.
• **Advanced**: Sets parameters according to the data in the files associated with the shape file. Defines the road type column and the specific road type Id in the file.

• **Rebuild All**: Rebuilds all data. If Roads mode is set to Design, 3DRoads objects will be created from design. If Roads mode is set to Global, global 3DRoads renderers will render built data.

• **Clean All**: Cleans *Target* container from sub containers.

11.15 Atlas

The plug-in can be found in the following folders:

• Viz Artist 2: Object -> Built in.

• Viz Artist 3: Built Ins -> Geom Plugins -> Maps.

The Atlas plug-in is used for displaying Microsoft satellite imagery. This object plug-in is used with a navigator plug-in, enabling interactive navigation to any location on Earth. The plugin can be used to display imagery for a Navigator animation (Hops), while creating the required image tiles for a smooth and complete camera movement.

This section contains information on the following topics:
11.15.1 Plug-in Description

The plug-in has two plug-in editor tabs; General and Advanced.

This section contains information on the following topics:
- General
- Advanced

General

Figure 89: Atlas plug-in General tab

<table>
<thead>
<tr>
<th>Atlas Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
</tr>
<tr>
<td>Advanced</td>
</tr>
<tr>
<td>Use Base Map</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>Map Size</td>
</tr>
<tr>
<td>1000.0</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Serial</td>
</tr>
<tr>
<td>Fade Time</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Texture Compression</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>Quality</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

The General tab is used to define imagery parameters.

- Use Base Map – this option is used when working with a base map above the Atlas container, and the base map is projected. Microsoft imagery is unprojected, so in order to have the images positioned correctly over the map set this parameter ON.

- Map Size – Defines the size of the Atlas image.

- Mode – This parameter defines the mode of retrieving the tiles from Microsoft server. When set to Serial, and new image tiles are required, Atlas plug-in will send a request to the server and wait for a reply. Only after the reply another tile will be requested, and so on. During the time that the plug-in is waiting for a reply the UI is locked the user cannot perform other operations. When set to Multithreaded, the images are requested by a thread of the plug-in and the UI is not locked.

- Fade Time – This parameter defines the duration of the transition between tile resolutions when zooming in/out of the image.

- Texture Compression – select one of the required compression modes for the images.

- Quality – select the quality of the images requested from the server.
Advanced

Figure 90: Atlas plug-in Advanced tab

The Advanced tab is used for configuring connection and operation parameters.

- **Temp Folder** – Defines a specific cache folder for the retrieved imagery.
- **Requests per Frame** – This parameter defines the maximal image requests from the server in a frame.
- **Layers** – This parameter defines the number of images (with different resolution) per one area.
- **Stop Support Margins** – when set ON, additional image tiles surrounding the displayed area will be retrieved, to enable immediate display of high resolution images when the user moves the image.
- **Use Proxy** – When set ON, proxy configuration parameters will be enabled. Use this option when working on a network with proxy:
 - **IP** – Proxy server IP number
 - **Socket** – Proxy socket number
 - **Username/Password**
 - **Set Proxy** – press this button to apply proxy settings.
- **Warmup** – The warm up button is used for preparing all image tiles for a defined animation. Once tiles are in the cache folder, the animation will play smoothly.
11.16 Curious 3D Terrain

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Shader (button) -> Maps.

The C3DTerrain plug-in is used for displaying terrain objects. The terrain is retrieved from the Viz World Server (WoS) when a CWM Client plug-in is added to a C3DTerrain object. When the CWM Client plug-in is added to the C3DTerrain plug-in, terrain tessellation parameters will be enabled in the Miscellaneous tab of the CWM Client plug-in.

This section contains information on the following topics:
- 11.16.1 Plug-in Description

11.16.1 Plug-in Description

The plug-in has three different plug-in editor views; Terrain, Pyramid and Advanced.

This section contains information on the following topics:
- Terrain
- Pyramid
- Advanced

Terrain

Figure 91: Terrain, Curious 3D Terrain editor

- Terrain Mode: Defines the data source for the terrain height:
• **File:** Load height from terrain file (*.c3d).
• **Image:** Use a Vizimage to create the terrain data.
• **Memory:** Terrain data may be accessible from three different sources: from a terrain file on disk (file), from server by using the CWMClient (memory) or from server using the CWMClient but then saved to the Viz Graphic Hub as an image (Image).
• **Terrain File Name:** Defines a path to the file to be loaded.

Note: The Terrain File Name parameter will be disabled when a CWM Client plug-in is attached to the Atlas container.

• **Height Scale Mode:** Sets the height scaling option for the terrain:
 • **Manual:** Sets the height scale manually by changing the Height Scale parameter. When selected, additional parameters will be enabled:
 • **Height Scale:** Sets the scaling value for the terrain elevation. Using a low value will flatten the terrain surface.
 • **Soft:** Sets the terrain surface to be softened by interpolating points over the terrain. This option prevents the sharp edges over the terrain surface.
 • **Normal:** Uses the same terrain elevation values received from the server.
 • **Exaggerate:** Applies a large scaling factor to the terrain height differences, exaggerating the terrain surface.
 • **Absolute:** The terrain height will not take into account the map size. Setting Height Scale Mode to Absolute may therefore be needed for the terrain tiling, or else the tiles might not connect properly (due to height differences).
• **Sampling Resolution:** Defines the number of points that will be used to calculate the terrain. The higher the sampling resolution, the less detail will be shown. When Pyramid mode is enabled (On), this parameter will be disabled
• **Globe:** When enabled (On), the terrain will be drawn as part of a globe and the Globe Radius parameter will be enabled.
 • **Globe Radius:** Sets the size of the globe used for drawing the terrain.

Note: The Globe and the Globe Radius parameters will be disabled if Use Base Map is enabled (On).

• **Use Base Map:** Defines the geographical referencing of the terrain. If Use Base Map is enabled (On), the terrain will move to its geographic location on the base map, and the Base Container parameter will be enabled.
 • **Base Container:** If empty and Use Base Map is enabled (On), the first map above the C3D terrain container in the hierarchy will be used as the base map. To use a specific map as the base map, drag a map container to the Base Container placeholder. If Use Base Map is disabled (Off), the Globe parameter will be enabled and the terrain will be drawn as part of a globe. Set the Globe Radius to modify the terrain size and curve.
• **Delta Z:** Sets the Z axis offset for the terrain (mainly used when using the base map).
• **Freeze Terrain:** Saves the terrain image and data as Viz images for faster loading and for archiving.
Pyramid

Figure 92: Pyramid, Curious 3D Terrain editor

A Pyramid in WoC is a set of map textures in different resolutions used for zooming into a defined area. When the camera is far from the map, a low resolution map texture is used (covering a wide area). As the camera zooms into the map, it will zoom into an area with higher resolution texture, until the final map, with the highest resolution, is used. In order to enable the Atlas’s Pyramid parameters a CWM Client plug-in must be attached to its container. Note that this will disable Atlas’s Terrain File Name parameter. See the Terrain editor view.

- **Pyramid**: This parameter defines if a pyramid of map textures will be created for the terrain area. When enabled (On) the Max Height and 3D Levels parameters will be enabled.
 - **Max Height**: Defines the number of textures that will be created.
 - **3D Levels**: Defines the number of terrain objects that will be created.
- **Blend Textures**: Defines if the edges of the maps will be soft, blending into the larger map of the pyramid. When enabled (On), the edges will be softened and the Blend Amount parameter will be enabled.
 - **Blend Amount**: Defines the amount of softness added to the map edges.
- **Rebuild Pyramid**: Builds the pyramid levels.

Note: The parameter Rebuild Pyramid is enabled only if Pyramid is enabled (On) and it will be visible in all tabs.
Advanced

Figure 93: Advanced, Curious 3D Terrain editor

- **Wireframe**: Displays the terrain as wireframe.
- **Sides Smoothing**: When enabled (On), the edges of the terrain will be drawn as flat lines (height is zero). This option is useful when using the terrain object over the base map. When enabled (On), additional parameters are enabled:
 - **Sides Smoothing Factor**: Defines the width of the area, close to the edges, that will be interpolated to create the smooth transition from terrain info to a flat edge.
 - **Uniform Smoothing**: Applies smoothing for all sides. Enabling Uniform smoothing (On), will set smoothing for all sides, and hide the individual parameters. Available individual parameters are; Left, Right, Top and Bottom smoothing.
- **Texture Compression**: Sets the compression level for the texture (DTX5 is the highest compression level; hence, less texture quality).
- **Terrain Status**: Displays the terrain object status. If the terrain object was rebuilt successfully, the indicator will display **OK**, otherwise, the indicator will be display **Not Rebuilt**.

11.17 Curious 3D Terrain Shader

The plug-in can be found in the following folders:
- **Viz Artist 2**: Function -> Shader (button) -> Maps.
- **Viz Artist 3**: Built Ins -> Shader -> Maps.

This shader has no configuration and is added automatically when using the Atlas plug-in.
11.18 Center Map

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The Center Map plug-in is used, with map objects, for keeping a point on the map in the center of the map object. The map is moved while the defined point remains centered. With a Flat map, the map is moved, but with a Globe map the globe is rotated. See also Map Tiler for more information on Flat and Globe maps.

Note: The Center Map plug-in should only be applied to map objects.

This section contains information on the following topics:
- 11.18.1 Plug-in Description

11.18.1 Plug-in Description

Figure 94: User, Center Map editor

- **Position**: Defines how the map will be centered:
 - **User**: Enables the user to manually define a center point by setting Map Center Longitude and Map Center Latitude values.

Figure 95: WPosition, Center Map editor

- **WPosition**: Centers the map at the location of a WPosition container dragged into the Remote Container place holder.
- **Navigator**: Centers the map at the location of a Navigator container dragged into the Remote Container place holder.
• **WPoint:** Centers the map at the location of a *WPoint* container dragged into the *Remote Container* place holder.
• **Map:** Centers the map at the center of a dragged map into the *Remote Container* map.
• **Local Scale:** Sets the scale parameter for the map.

11.19 Color Matrix

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Shader (button) -> Maps.
- Viz Artist 3: Built Ins -> Shader -> Maps.

Color Matrix is used to perform automatic color correction on tiles when performing zoom operations on for example satellite imagery.

Zooming can be a problem (e.g. when zooming to street levels) as the tiles often shift color from one level to another. Tiles also change color depending on the size of the tile(s) used. The result will often be that the tiles look like stamps.

The color correction is done using *Pyramid Control* which assigns the Color Matrix shader plug-in to fix the colors.

This section contains information on the following topics:
- **11.19.1 Plug-in Description**
11.19.1 Plug-in Description

Figure 96: Manual, Color Matrix editor

- **Mode**: Sets the color matrix mode. When set to Fading, only fading of texture edges are active. When set to Manual, all parameters of the plug-in can be managed manually. When set to Slave, all parameters of the plug-in is managed by other plug-ins.
- **Translate R,G,B**: Shifts the corresponding color component.
- **Scale R,G,B**: Shifts the corresponding color component.
- **Fade Factor**: Sets the fade factor for the texture edges.
- **Keying Mode**: Sets the keying mode.
 - **None**: Color keying is disabled.
 - **Full**: All colors are keyed out.
 - **Color**: All colors in the range (Key Color – Key Color Threshold, Key Color + Key Color Threshold) will be keyed out.
 - **Alpha**: All colors with the 0.0 in the alpha channel will be keyed out.
 - **Color and Alpha**: All colors in the range (Key Color – Key Color Threshold, Key Color + Key Color Threshold) and colors with the 0.0 in the alpha channel will be keyed out.
 - **Color or Alpha**: All colors in the range (Key Color – Key Color Threshold, Key Color + Key Color Threshold or colors with the 0.0 in the alpha channel will be keyed out.
- **Key Color**: Sets the key color used in Keying Mode.
- **Key Color Threshold**: Sets the key color threshold use in Keying Mode.
- **Key Color Attack**: Smoothens the key color edges.
11.20 CWM Client

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The CWMClient plug-in is the main plug-in in Viz World Client (WoC). The CWMClient plug-in launches the Viz World Editor (WoC editor) and retrieves the map from the Viz World Server (WoS) after the user applied the changes to the map in WoC editor.

Note: The plug-in uses the VizMapsManager.dll to connect to the Viz World Server machine configured in Viz Config page.

This section contains information on the following topics:
- 11.20.1 Plug-in Description

11.20.1 Plug-in Description

The CWM Client plug-in has five different plug-in editor views; Texture, Labels, 3D Objects, Miscellaneous and CMR. In addition it has two default buttons that applies to the plug-in as a whole.
- **Viz World Editor (WoC editor):** Opens the WoC editor. WoC editor connects to Viz World Server that is defined in Viz Config, and retrieves the current map or opens the defined default project if no map exists (fresh plug-in instance).
- **Refresh Map:** Re-draws the map and refreshes the related Viz objects using Viz World Client (WoC) plug-ins in the scene hierarchy. For example if a label design has been changed in Viz Artist, clicking Refresh Map will redraw the map with the new label design without opening WoC editor.
- **Refresh Map (Force New):** Re-creates the map on the server and saves it to the cache. This operation will force the map creation, even if the map exists in the cache folder.

This section contains information on the following topics:
- Texture
- Labels
- 3D Objects
- Miscellaneous
- CMR
Texture

Figure 97: Texture, CWM Client editor

The texture section defines the geo map image parameters:

- **Lock Aspect Ratio**: Effects texture height and texture width parameters. When enabled (On) any change in the texture height or width will affect both parameters. When disabled (Off), each parameter is controlled separately.
- **Texture Size**: Presets for texture sizes.
- **Auto Adjust To Globe**: If texture size is other than manual, this parameter defines if the texture size will be modified when mapped on a globe. This option is used when displaying maps that are close to Earth’s poles.
- **Texture Width**: Defines the number of pixels in the map width. When aspect ratio is locked, changing the texture width will automatically change the Texture Height parameter.
- **Texture Height**: Defines the number of pixels in the map height. When aspect ratio is locked, changing the texture width will automatically change the Texture Width parameter.
- **Texture Compression**: Sets the compression level for the texture (DTX5 is the highest compression level, i.e. less texture quality).
- **Texture Quality**: If set to Linear it will use the same image resolution in the entire zoom range, or when set to Mipmap it will change resolution according to the distance from the image (managed automatically in Viz Artist).

Labels

Figure 98: Image labels, CWM Client editor

- **Map Labels**: Defines the labels usage and behavior over the map, and has three available options; Image, Viz and Compatibility.
• **Image**: Labels produced by Viz World Server will be displayed as part of the map texture.
• **Viz**: labels will be displayed using Viz 3D label designs.
• **Compatibility**: Displays labels using Viz 3D label designs. But label objects will be defined in the plug-in like in the old versions of the CWMClient plug-in. This mode is for compatibility only. It is recommended not to use this mode when designing a scene but to use the **Viz** or **Image** options instead.

Figure 99: Viz Labels, CWM Client editor

- **Create Labels**: Select **All** to build all labels defined in WoC. Select **Visible** to build only labels that are shown on the selected map.
- **Label Source**: Defines the source for the label designs. Available options are **Viz-DB** and **Scene**.
 - **Viz-DB**: Label source is a merged object from Viz objects library, containing the label designs.
 - **Scene**: Label source is a group container in the scene hierarchy, containing the label designs.
- **On Map Designs**: Defines the source of the labels that are displayed on the map. When Viz DB (Viz Graphic Hub) is selected, define the path to a merged object, containing the label designs, in Viz object library. When Scene is selected, drag a group container with the label designs to the container placeholder.
- **On Screen Designs**: Defines the source of the labels that are displayed on a plane in front of the screen. When Viz DB is selected, define the path to a merged object, containing the label designs, in Viz object library. When Scene is selected, drag a group container with the label designs to the container placeholder.
- **On Map Holder**: This parameter is a container used for grouping all the generated labels on the map. When a map with labels is selected, the plug-in will duplicate the label designs and create the labels. The duplicated labels will be placed under the **On Map Holder** container.
- **On Screen Holder**: This parameter is a container used for grouping all the on-screen labels (labels that are not geo-referenced) used in the map. When a map with on-screen labels is used and Viz is selected, the on screen label designs will be copied to the holder container and the label information will be sent to the copied designs.
3D Objects

The 3D Objects section defines 3D properties of objects on the map, other than labels (regions, roads and so on).

Figure 100: 3D Objects and Regions, CWM Client editor

- **Map 3D Regions**: Defines if the regions will be part of the received texture or 3D objects. When set to **Disabled**, regions will be displayed as part of the texture. When set to **Enabled** the **Viz-DB** and **Scene** parameters are made available.

- **Source**: Sets the source for region designs. Available options are **Viz-DB** and **Scene**.
 - **Viz-DB**: Sets region source to be a merged object from Viz objects library, containing the region designs.
 - **Scene**: Sets region source to be a group container in the scene hierarchy, containing the region designs.

- **On Map Designs**: Defines the source of the **3D Region** objects that are displayed on the map. When Viz DB is selected, define the path to a merged object, containing the region designs, in Viz object library. When **Scene** is selected, drag a group container with the region designs to the container place holder.

- **On Screen Designs**: Defines the source of the **3D Region** objects that are displayed on a plane in front of the screen. When Viz **DB** is selected, define the path to a merged object, containing the region designs, in Viz object library. When **Scene** is selected, drag a group container with the region designs to the container place holder.

- **On Map Holder**: This parameter is a container used for grouping all the generated 3DRegion objects on the map. When a map with regions is selected, the plug-in will duplicate the region designs and create the **3D Region** objects. The duplicated regions will be placed under the **On Map Holder** container.

- **On Screen Holder**: This parameter is a container used for grouping all the on screen regions (regions that are not geo-referenced) used in the map. When a map with on screen regions is used and **Viz** is selected, the on screen region
designs will be copied to the holder container and the region information will be sent to the copied designs.

Figure 101: 3D Objects and Borders, CWM Client editor

- **Map 3D Borders**: Defines if the border line will be part of the received texture or drawn as a 3D object. When set to *Disabled*, borders will be displayed as part of the map texture. When set to *Enabled* the *Viz-DB* and *Scene* parameters are made available and the shapes added in the WoC editor will be drawn as a 3D object by Viz.

- **Visible Filter**: set the filter level for border details. If *None* is selected, all border data is drawn. If *Region* is selected, Sub Region data will not be drawn. If *Country* is selected, region and sub–region borders will not be drawn.

- **Source**: Sets the source for the border designs.
 - **Viz–DB**: Sets the border source to be a merged object from Viz objects library, containing the border designs.
 - **Scene**: Sets the border source to be a group container in the scene hierarchy, containing the border designs.

- **On Map Designs**: Defines the source of the 3D Line objects that are displayed on the map. When *Viz DB* is selected, define the path to a merged object, containing the border designs, in Viz object library. When *Scene* is selected, drag a group container with the border designs to the container place holder.

- **On Map Holder**: This parameter is a container used for grouping all the generated 3DBorder objects on the map. When a map with borders is selected, the plug–in will duplicate the border designs and create the 3D Line objects. The duplicated borders will be placed under the *On Map Holder* container.
• **Map 3D Shapes**: Defines if the shapes will be part of the received texture or drawn as a 3D object. When set to *Disabled*, shapes will be displayed as part of the map texture. When set to *Enabled* the *Viz-DB* and *Scene* parameters are made available and the shapes added in the WoC editor will be drawn as a 3D object by Viz.

• **Source**: Sets the source for the shape designs.
 - *Viz-DB*: Sets the shape source to be a merged object from Viz objects library, containing the shape designs.
 - *Scene*: Sets the shape source to be a group container in the scene hierarchy, containing the shape designs.

• **On Map Line Designs**: Enables the user to add vector line data to the map. Either by using the draw option in the WoC editor (Add Shape), or from selecting an existing line data (e.g. street).

• **On Map Area Designs**: Vector area designs. This option has support for the area draw option in the WoC editor.

• **On Map Designs**: Defines the source of the 3D Region objects that are displayed on the map. When *Viz DB* is selected, define the path to a merged object, containing the shape designs, in Viz object library. When *Scene* is selected, drag a group container with the shape designs to the container place holder.

• **On Map Holder**: This parameter is a container used for grouping all the generated 3DShape objects on the map. When a map with shapes is selected, the plug-in will duplicate the shape designs and create the 3D Region objects. The duplicated shapes will be placed under the *On Map Holder* container.
• **3D Roads**: Defines if the road data will be drawn on the map and the way the roads will be drawn. Available options are None, Crop To Map and All.
 - **None**: The roads data will not be available to be drawn on the map.
 - **Crop To Map**: Enables the Visibility Filter and Visibility Factor (%) settings, limiting the roads data.
 - **All**: Loads the selected road data.
 - **Labels Only**: only the road labels will be drawn.
• **Visibility Filter**: Sets the highest level of road type that will be cropped. Available options are Freeway, Primary, Main, Secondary and Other.
 - **Freeway**: Crops all roads rated as freeways and lower (that is all roads) using the Visibility Factor.
 - **Primary**: Crops all roads rated as primary roads and lower (that is primary, main, secondary and other) using the Visibility Factor.
 - **Main**: Crops all roads rated as main roads and lower (that is main, secondary and other) using the Visibility Factor.
 - **Secondary**: Crops all roads rated as secondary roads and lower (that is secondary and other) using the Visibility Factor.
 - **Other**: Crops all roads rated as other roads (that is none of the above) using the Visibility Factor.
• **Visibility Factor (%)**: Defines the cropping area of the roads on the map. 100% means the roads will be cropped at the map edges and cover the entire map area. A lower value will cause the selected road types in the Visibility Filter to be cropped (evenly from the map edges).
• **Simplify Threshold (Meters)**: Applies a simplifying algorithm on road data. The number represents the biggest allowed error.
• **Ignore Filter**: Disables creation of roads that are lower or equal to the selection.
• **Roads Mode**: Applies one set of road design for all roads (Global), or uses a design per CWMClient (Design).
• **Source**: Sets the source for road designs. Available options are Viz-DB and Scene.
 - **Viz-DB**: Sets road source to be a merged object from Viz objects library, containing the road designs.
- **Scene**: Sets road source to be a group container in the scene hierarchy, containing the road designs.

- **On-Map Designs**: Defines the source of the 3D Roads objects that are displayed on the map. When *Viz–DB* is selected, define the path to a merged object, containing the road designs, in Viz object library. When *Scene* is selected, drag a group container with the road designs to the container place holder.

- **On-Screen Designs**: Defines the source of the 3D Roads objects that are displayed on a plane in front of the screen. When *Viz–DB* is selected, define the path to a merged object, containing the road designs, in Viz object library. When *Scene* is selected, drag a group container with the road designs to the container place holder.

- **On Map Holder**: This parameter is a container used for grouping all the generated 3D Roads objects on the map. When a map with roads is selected, the plug-in will duplicate the road designs and create the 3D Roads objects. The duplicated roads will be placed under the *On Map Holder* container.

- **On Screen Holder**: This parameter is a container used for grouping all the on screen roads (roads that are not geo-referenced) used in the map. When a map with on screen roads is used and *Viz–DB* is selected, the on screen road designs will be copied to the holder container and the road information will be sent to the copied designs.

Figure 104: 3D Objects and Advanced, CWM Client editor

- **Create Regions**: Defines if all the selected regions will be created (when using 3D regions) or only the regions that are visible on the selected map.

- **Sort Regions**: Defines how the labels and 3D Objects will be duplicated in the scene tree.
 - **No**: Creates the duplicated labels and 3D objects in the scene tree grouped by geographic levels that is for each country, first the country, then the regions, then the sub regions, and so on.
 - **Ascending**: Creates the duplicated labels and 3D objects created in the scene tree sorted by ascending geographic levels, that is first the sub regions, then the regions, then the country container.
 - **Descending**: Creates the duplicated labels and 3D objects in the scene tree sorted by descending geographic levels, that is first the sub regions, then the regions, then the country container.

- **Copy Map To Region**: Sets if a map of the region will be applied to the 3D Region object.
• **Auto Borders**: Defines if borders will be added automatically to the map and the level of the borders:
 - **Off**: No borders will be added.
 - **Highest**: Draws country borders for the selected area (or region borders if only a region was selected).
 - **Intermediate**: Draws region borders (or sub-regions if only a region was selected).
 - **Lowest**: Draws sub-region borders.

Miscellaneous

Figure 105: Miscellaneous, CWM Client editor.

The Miscellaneous section includes additional general parameters of the map.

• **WoC editor Aspect**—Defines the aspect of the map in the WoC editor window:
 - **Image**: When enabled, the aspect is set by the texture size defined in the texture screen of the CWM Client plug-in.
 - **User**: When enabled, the user can manually set the aspect. When selected, the *Aspect* parameter will be enabled. The aspect is modified by changing the aspect value.
 - **Camera**: Sets the aspect to be the same as the current camera in use. Selecting this option will therefore open the WoC editor in the same aspect as the current camera.
 - **Auto**: When enabled, the plug-in will look for a Navigator plug-in in the hierarchy, above the CWM Client plug-in. If a Navigator is found the camera aspect will be used. If the Navigator plug-in was not found, the image aspect will be used.
Freeze: When enabled (On), the map retrieved from the server will be saved as an image in the Viz image library and used as a static geo-referenced image. All map dynamic parameters will be hidden.

Trio Mode: When set to Off, the plug-in will request the map from the server or cache when the scene is loading. If Trio mode is set ON, the scene will load without requesting a map since Viz Trio (or other external application) will send the parameters for a map to use. This option saves time during initialization of scenes using a dynamic map.

Is Linked: When the Is Linked parameter is set, a CWMClient (slave) is controlled by another CWMClient (master). To control another CWMClient, drag and drop a container with a CWMClient (slave) plug-in onto the CWMClient (master) plug-ins' Linked Map placeholder (see next parameter).

Linked Map: When set, this parameter is a container placeholder that defines the map that will be linked to the current map. The linked map is another CWM Client container that will receive the same map as the map selected from the WoC editor.

Linked Map Size: Defines the size of the linked map as a percentage from the main map, that is if 50% is defined the linked map will show half of the area defined in the main map.

Terrain Tessellation Locked: Appears when a C3DTerrain plug-in is combined with the CWMClient plug-in.

- **Tessellation** is the terrain resolution, which is the number of polygons used to build the terrain object. The higher the tessellation, the more detailed the terrain will be. Use the *Width Tessellation* and *Height Tessellation* parameters to fine tune the quality versus the performance of the scene.
- When set to On, only the *Width Tessellation* parameter can be changed; hence, the setting will apply for both Width and Height.
- When set to Off, the parameters can be set individually.
CMR

Figure 107: CMR, CWM Client editor.

The CMR (Curious Multi Resolution) section includes Curious Maps Terrain configuration options.

- **Use CMR**: Defines if the map will be generated from a CMR file or from the server. When enabled (On) additional parameters are made available, and the Viz World Editor (WoC editor) button is disabled.

- **CMR**: Defines a CMR file to be used as a source for the map.

 Note: Most CMR’s requires a valid license.

- **Lon**: Sets the map longitude.

- **Lat**: Sets the map Latitude.

- **Width (deg)**: Sets the area width in degrees, kilometers, miles or nautical miles.

- **Status**: Displays the current CMR operation status.

- **Get CMR**: Retrieves the defined CMR data (of the area defined by Lon, Lat and Width parameters).

- **Center Longitude Latitude**: When clicked, the CMR will be created with the longitude and latitude values as the center of the CMR.

 Note: The longitude and latitude values must be within the CMR area. If the values are not within the CMR area no map will be created.

11.21 Fade Texture

The plug-in can be found in the following folders:
11.21.1 Plug-in Description

The plug-in has three plug-in editor views that enables the different Curve control options; Constant, Spline and Uniform.

This section contains information on the following topics:
- Constant
- Spline
- Uniform

Constant

Figure 108: Constant curve, Fade Texture editor

Texture edges are controlled separately but no softness is applied to the texture edges.
- **Crop Top**: Sets the crop value for the top of the texture.
- **Crop Bottom**: Sets the crop value for the bottom of the texture.
- **Crop Left**: Sets the crop value from the Left of the texture.
- **Crop Right**: Sets the crop value for the right of the texture.
Spline

Figure 109: Spline curve, *Fade Texture* editor

Texture edges are controlled separately and a common softness value is applied to all edges.
- **Crop Top**: Sets the crop value for the top of the texture
- **Crop Bottom**: Sets the crop value for the bottom of the texture
- **Crop Left**: Sets the crop value for the Left of the texture
- **Crop Right**: Sets the crop value for the right of the texture
- **Fade**: Sets the softness value for the edges of the texture.

Note: If an edge is not cropped, the softness will affect the edge.

Uniform

Figure 110: Uniform curve, *Fade Texture* editor

All texture edges are controlled together with a fixed softness value applied.
- **Uniform Crop**: Sets the crop value for all edges of the texture (fixed softness will be added to all edges).

11.22 Flat MR

The plug-in can be found in the following folders:
• Viz Artist 2: Object -> Built in.
• Viz Artist 3: Built Ins -> Geom Plugins -> Maps.

The FlatMR plug-in is used for displaying CMR files over a flat object. The texture for the terrain is defined in the file or retrieved from Microsoft Virtual Earth (when licensed).

IMPORTANT! This plug-in is included in Viz World Client package for compatibility reasons, and is not maintained. It is recommended to use the Atlas and other plug-ins for designing new scenes.

11.23 GeoImage

The plug-in can be found in the following folders:
• Viz Artist 2: Object -> Built in.
• Viz Artist 3: Built Ins -> Geom Plugins -> Maps.

The GeoImage plug-in is used as a base object with maps to enable geographic referencing options. GeoImage is short for Geographical reference Image.

This section contains information on the following topics:
• 11.23.1 Plug-in Description

11.23.1 Plug-in Description

![GeoImage editor](image)

- **Use Base Map**: Defines the geographical referencing of the GeoImage. If Use Base Map is enabled (On), the GeoImage will move to its geographic location on the base map and resize accordingly.
 - Enabling (On) Use Base Map enables the Base Container parameter.
 - Disabling (Off) Use Base Map enables the Map Size parameter.
- **Map Size**: Sets the size of the GeoImage geometry.
Figure 112: Use Base Map, GeoImage editor

- **Base Container**: If empty, the first geo-referenced map above the GeoImage container in the hierarchy will be used as the base map. To use a specific map as the base map, drag a map container to the Base Container placeholder.
- **Delta Z**: Sets a Z offset for the GeoImage geometry.

Figure 113: Crop Lon/Lat, GeoImage editor

- **Crop Mode**: Defines if the GeoImage will be cropped:
 - **None**: The map will not be cropped.
 - **Manual**: Allows the user to manually set the crop values for the map: **West** and **East** sets the Longitude value for the western and eastern edge of the GeoImage map. **North** and **South** and sets the Latitude value for the northern and southern edge of the GeoImage map.
 - **Base Map**: Crops the GeoImage according to the base map, that is, if the GeoImage exceeds the base map edges, it will be cropped accordingly.
- **Apply Fade Plugin**: When clicked, a Fade Texture plug-in will be applied to the container.
11.24 Focus On Map

The plug-in can be found in the following folders:

The FocusOnMap plug-in is used to create a single “hop” (high resolution map over a large referencing map) without using a navigator plug-in and with no animation. This plug-in is used when creating a large map (reference map) with 3DObjects over it (roads, shapes, and so on). It enables the user to display a high resolution area of the large map without recreating the 3DObjects when changing the displayed area.

This section contains information on the following topics:
- 11.24.1 Plug-in Description

11.24.1 Plug-in Description

The FocusOnMap plug-in has three different tabs: Position, Camera and Labels.
- **Position**: Enables the parameters for the requested map area where the Position Source defines the source of the viewed area.
- **Camera**: Defines the camera parameters such as camera number and minimal and maximum distance of the camera from the map.
- **Labels**: Defines label parameters for how labels should be displayed.

This section contains information on the following topics:
- Position
- Camera
- Labels
Position

Figure 114: Position, Focus On Map Editor

- **Map**: Fits the selected map in the FocusOnMap container to the screen according to the *Fit To Screen By* selection.
- **Fit To Screen By**: Sets the map attribute that will be used to fit the map to the screen: Width, Height, Min (the minimal value of the map’s width and height), Max (the maximal value of the map’s width and height), Average (the average of the map’s width and height).
- **Longitude Offset**: Sets a longitude offset from the center of the selected map
- **Latitude Offset**: Sets a latitude offset from the center of the selected map
- **Distance Offset**: Sets a distance offset from the center of the selected map
- **Pan**: Sets a pan value for the camera.
- **Tilt**: Sets a tilt value for the camera.
- **Absolute**: Enables the user to manually set the parameters for the viewed area:
 - **Longitude**: Sets the Longitude of the viewed area (center).
 - **Latitude**: Sets the Latitude of the viewed area (center).
 - **Distance offset**: Sets a fixed distance offset from the selected map.
 - **Distance**: Sets a distance from the map.
 - **Pan**: Sets a pan value for the camera.
 - **Tilt**: Sets a tilt value for the camera.
- **3D Region**: The selected map in the FocusOnMap container will be fitted to the screen according to the *Fit To Screen By* selection.
 - **Fit To Screen By**: Select the 3DRegion attribute that will be used to fit the map to the screen: Width, Height, Min (the minimal value of the map’s width and height), Max (the maximal value of the map’s width and height), Average (the average of the map’s width and height).
 - **Longitude Offset**: Sets a longitude offset from the center of the selected 3DRegion.
 - **Latitude Offset**: Sets a latitude offset from the center of the selected 3DRegion.
 - **Distance Offset**: Sets a distance offset from the center of the selected 3DRegion.
 - **Pan**: Sets a pan value for the camera.
 - **Tilt**: Sets a tilt value for the camera.
Note: Pan and Tilt parameters will be disabled unless the Pan & Tilt Animation parameter in the Navigator plug-in is enabled (On).

Camera

Figure 115: Camera, Focus On Map Editor

- **Camera**: Defines the camera number that will be affected by the FocusOnMap plug-in.
- **Clipping Plane Control**: Defines the selected camera's clipping plane. **Static (Viz)** draws the objects within the clipping plane values defined in Viz. For Viz 2.x see Setup->Camera->Camera Clipping Plane. For Viz 3.x see Scene Settings->Renderer->Camera Clipping Plane. **FocusOnMap** adjusts the clipping plane values according to the camera position. This is automatically done by the Focus On Map plug-in based on the Near Distance and Far Distance parameters.
 - **Near distance (%):** Defines the minimal distance of the camera from the map.
 - **Far Distance (%):** Defines the maximal distance of the camera from the map.

Labels

Figure 116: Labels, Focus On Map Editor

- **Labels**: Defines how the labels will be displayed:
 - **Overlay**: Labels are displayed as a layer on the screen not affected by the camera movement when a new area is selected.
 - **On Map**: Labels are displayed on the map, moving with the map as the selected area is changed.
• **Label Camera**: Defines the camera number used for displaying the on screen labels.
• **Get Map**: When clicked, the camera will jump to the defined area.

11.25 Geo Text

The plug-in can be found in the following folders:
• Viz Artist 2: Function -> Container (button) -> Maps.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps.

![GeoText Example](image)

The GeoText plug-in is used to display the longitude and latitude values received from a variety of sources. The geographic data is displayed in two text objects (or one) defined by the longitude and latitude containers.

This section contains information on the following topics:
• **11.25.1 Plug-in Description**

11.25.1 Plug-in Description

• **Source**: Defines the source of the geographic data that will be displayed in the defined containers under the Containers tab.
• **User**: Sets the value manually in the Compass, Longitude and Latitude parameters for the position and range values. The Compass, Longitude and Latitude parameters will be enabled only when Position is set to User.

• **WPosition**: The defined Containers display the values received from the World Position plug-in on the same container as the GeoText plug-in.

• **Navigator**: The GeoText plug-in receives the geographic data from the Navigator plug-in in the scene. The received data from the Navigator plug-in is the location of the center of the Navigator point of view and the difference between the edges of the current Navigator map.

• **WPoint**: The defined Containers display the value received from the WPoint plug-in on the same container as the GeoText plug-in.

Note: WPoint is a Viz Weather plug-in which is not covered in this manual.

• **Map**: When placed on a map container, the GeoText plug-in will send the center of the map data to the Longitude and Latitude containers and the difference between the edges of the map to the range containers. **Line**: When placed on a 3DLine container, the GeoText plug-in will send the center of the line data to the defined containers in the Containers tab.

There are three parameter tabs for each option in the position parameter:

Figure 118: Source set to User and Position, Focus On Map editor

- **Position**: Defines the position text format. Select the required format from the Degrees Format list.
Figure 119: Source set to User and Range, Focus On Map editor

- **Range:** Defines the range text format. Select the units for the displayed values and select the required format from the Degrees Format list. If Kilometers, Miles or Nautical Miles are selected, Dot or Comma can be selected as a separator with a fixed decimal point.

Figure 120: Source set to User and Containers, Focus On Map editor

- **Containers:** defines the font objects that will display the longitude and latitude values of the position and range:
 - **Longitude Position:** When set, this parameter is linked to the text object displaying the longitude position data received from the GeoText plug-in.
 - **Latitude Position:** When set, this parameter is linked to the text object displaying the latitude position data received from the GeoText plug-in.
 - **Compass:** When set, this parameter is linked to an object that will be rotated to show the North (based on navigator direction).
 - **Longitude Range:** When set, this parameter is linked to the text object displaying the longitude range data received from the GeoText plug-in.
 - **Latitude Position:** When set, this parameter is linked to the text object displaying the latitude range data received from the GeoText plug-in.
• **Legend:** When set, view width and view height values will be scales based on the object used for the legend.

• **Length:** When set, this parameter is linked to the text object displaying the length of the line object as received from the GeoText plug-in.

11.26 Globe

The plug-in can be found in the following folders:

- Viz Artist 2: Object -> Built in.

The **Globe** plug-in is used as a base object, with maps, to enable geographic referencing options over a globe. The globe object will geographically reference the map at the correct location over the globe.

Figure 121: Globe example

This section contains information on the following topics:

- **11.26.1 Plug–in Description**
11.26.1 Plug-in Description

- **Tessellation**: Defines the number of polygons used to create the Globe geometry.
- **Sub Tessellation**: This parameter divides each of the Globe flat areas, to increase texture coordinates and improve the way the textures look on a globe.
- **Radius**: Defines the radius of the globe.
- **West**: Sets the Longitude value for the western edge of the Globe. The globe object will be cropped at that Longitude.
- **East**: Sets the Longitude value for the eastern edge of the Globe. The globe object will be cropped at that Longitude.
- **South**: Sets the Latitude value for the southern edge of the Globe. The globe object will be cropped at that Latitude.
- **North**: Sets the Latitude value for the northern edge of the Globe. The globe object will be cropped at that Latitude.
- **Enable Hole**: Saves performance when building pyramids using globe objects. When the globe objects for the pyramid layers are created, a hole is created where the higher resolution maps are, to avoid rendering multiple pixel layers (and to save performance). It can be used manually to create a hole in a globe object by setting values which are in the area of the map in use. When enabled (On) additional parameters will be enabled:
 - **Hole West (From lon)**: Defines an inner Longitude in the map area where the hole will begin (West side).
 - **Hole East (To lon)**: Defines an inner Longitude in the map area where the hole will begin (East side).
 - **Hole South (From lat)**: Defines an inner Latitude in the map area where the hole will begin (South side).
 - **Hole North (To lat)**: Defines an inner Latitude in the map area where the hole will begin (North side).
Crop Globe: Select an option for cropping the globe:
- **Manual:** the globe object will be cropped according to the values set in the West, East, South and North parameters.
- **Automatic:** the globe object will be cropped according to the geographical properties of the map applied to the Globe.

Texture Mapping: This parameter defines how the texture (map) will be mapped over the Globe:
- **Absolute:** the globe object will be cropped according to the values set in the West, East, South and North parameters.
- **Relative:** the globe object will be cropped according to the geographical properties of the map applied to the Globe.
- **GeoRef:** The map will be mapped over the globe object according to its geographical properties.

GeoRef Only: Defines if the Globe is used for geographical referencing only (not drawn) or as an object (will be drawn).
- If set to No, the globe object will be drawn (with the attached map).
- If set to Yes, the globe object will be used for geographic referencing only and will not be drawn.

This mode is used when creating globe tiles. The reference map is not used, since only the tiles are visible. If the reference globe is not drawn, it saves performance.

Map Status: Reports if the map was loaded as expected (Ok), geographic referencing of the map, and so on.
• **Apply Fade Plugin**: When clicked, a **Fade Texture** plug-in will be applied to the container.

• **Face Z Axis**: When clicked, the globe object will rotate and centre facing the Z-axis. This button can be used when not a full globe is rendered (for example only Asia). Do not use this feature with the **Navigator** plug-in as it assumes no rotation.

11.27 Globe Zoom

![GlobeZoom](image)

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

IMPORTANT! This plug-in is included in Viz World Client package for compatibility reasons, and **is not maintained**. It is recommended to use the **Navigator** and **NavFinder** plug-ins for designing new scenes.

11.28 Hop Sync

![HopSync](image)

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The **HopSync** plug-in is used to coordinate between labels and other 3D objects with built-in animations and hop animations. The HopSync plug-in is applied to the same container as the **Label It** plug-in, or to a container above the label design containers but below the top design container which will be used to create the label merged object. To use HopSync plug-in, the label designs must include a merged object containing the design. The plug-in defines a point in the label animation that will be matched with the hop point in the Navigator animation.

This section contains information on the following topics:
- **11.28.1 Plug-in Description**
11.28.1 Plug-in Description

Figure 123: Hop Sync editor

<table>
<thead>
<tr>
<th>HopSync Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Animation Start Time (Seconds Before Hop Point)</td>
</tr>
<tr>
<td>Order Offset</td>
</tr>
<tr>
<td>Animation Order Offset Time (Seconds Extra)</td>
</tr>
<tr>
<td>Set Highlight Time</td>
</tr>
</tbody>
</table>

- **Director**: Defines to which director the label animation will be copied to.
- **Navigator**: Copies the label animation to the Navigator director. This option is used when the label animation should end before or at the time the Navigator animation has reached a hop point. When the navigator director reaches a hop point and continue is pressed (or pause time will end) the label animation will also continue, causing the label to disappear.
- **Hop Director**: Copies the label animation to a new director. This option is used when the label animation should end after the hops animation has stopped (or paused). If the label animation will be copied to the Navigator director, the label animation will stop before the entire label was revealed.
- **Animation Start Time**: Defines the point in the label animation that will be matched to the hop point in the Navigator animation. The value is set by typing in a number (in seconds), or clicking and sliding the mouse over the parameter until the animation point is reached. Another option is to use the *Set Highlight Time* button. Play the animation and when reaching the requested point in the label animation, stop and click the *Set Highlight Time*. The current label animation value will be copied to the *Animation Start Time* field.
- **Order Offset**: Enable/disable an offset between the animation of the objects.
- **Animation Order Offset Time**: How much time to offset the animation, e.g when setting this value to 1.2, the 3rd detail animation will start after 2.4 seconds after the animation has reached the destination.

11.29 Label It

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The LabelIt plug-in is used for managing 3D labels and place indicators. The plug-in creates a hierarchy under its container for adding a caption, body and pointer objects.
Chapter 11: Maps Plug-ins

11.29.1 Plug-in Description

The plug-in has four plug-in editor views; Caption, Overlay, OnMap Scale and Fade. In addition this section also explains some Practical Use aspects of the plug-in.

This section contains information on the following topics:
- Caption
- Overlay
- OnMap Scale
- Fade
- Practical Use

Caption

Caption defines the relation between the label components (text and pointer).

Figure 124: Caption disabled, Label It editor

<table>
<thead>
<tr>
<th>LabelIt Plugin (10 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caption</td>
</tr>
<tr>
<td>Disabled</td>
</tr>
<tr>
<td>Rotate Labels</td>
</tr>
</tbody>
</table>

- **Caption:** When disabled, duplicated labels will use the label design exactly. When enabled the labels will use the following options:

Figure 125: Caption enabled, Label It editor

<table>
<thead>
<tr>
<th>LabelIt Plugin (10 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caption</td>
</tr>
<tr>
<td>Disabled</td>
</tr>
<tr>
<td>Number Of Presets</td>
</tr>
<tr>
<td>Presets</td>
</tr>
<tr>
<td>Direction (deg)</td>
</tr>
<tr>
<td>Distance (cm)</td>
</tr>
<tr>
<td>Caption Pivot</td>
</tr>
<tr>
<td>Collision Mode</td>
</tr>
<tr>
<td>Rotate Labels</td>
</tr>
</tbody>
</table>

- **Presets:** The Labelit object is controlled by the Label Manager plug-in.
- **WoC editor:** The default pointer direction (angle) and default distance between the pointer and the label is set by the map label parameters and used by the Viz World Editor (WoC editor). If the direction and distance are changed while
using the WoC editor the Default Direction and Default Distance values will be ignored.

- **Number of Presets**: Defines the number of label position presets available to the user (one to four presets). This parameter will be enabled only when Caption Mode is set to Controlled.
- **Direction**: Sets the angle of the label in relation to its geographical position.
- **Distance**: Sets the distance of the label from its geographical position.
- **Caption Pivot**: When caption is moved (rotated along the tip) the two options, Fixed and Edge, define the connection point between the caption and the body. Fixed sets the connection point to be the center of the caption. Edge sets the connection point to depend on the correct rotation. If the caption is above the tip, the connection point will be the middle lower side of the caption. If the caption is on the right side of the tip it will be on the left side of the caption. For example: A line moving from the tip to the center of the caption and where it crosses the caption bounding box is the connection point.
- **Collision Mode**: Defines how the labels will be placed when an overlap or collision between two labels occur. With Tip, the pointers of overlapping labels can cross or touch, but no overlap of label bodies are allowed. With Bounding Box, a bounding box is calculated around the entire label (label body and pointer). An overlap between labels bounding boxes is not allowed.
- **Rotate Labels**: Defines if labels, created in Viz (3D labels), will be rotated like the labels in Viz World Editor (WoC editor). If set to **Disabled**, all labels will be displayed horizontally. If set to **Enabled**, labels that were rotated in Viz World Editor will be rotated in Viz.

Overlay

Navigator Overlay defines how the label will be displayed over the map. Available options are **Disabled**, **Fixed**, **Scaling**, **Near Scale** and **Far Scale**.

Figure 126: Overlay, Label It editor

<table>
<thead>
<tr>
<th>LabelIt Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caption</td>
</tr>
</tbody>
</table>

Navigator Overlay

- **Disabled**: Places the label on the map using its geographical referencing.
- **Fixed**: Places the label by keeping its geographical referencing but using a different camera (either with dynamic image or with a front layer). The label size will remain fixed.
- **Scaling**: Places the label by keeping its geographical referencing but using a different camera (either with dynamic image or with a front layer). The Label will scale trying to imitate the camera movement.
- **Near Scale**: Defines the maximal size of the label on the screen (that is when zooming in what will be the final size of the label).
• **Far Scale**: Defines the minimal size of the label on the screen (that is when zooming out what will be the final size of the label).

OnMap Scale

Figure 127: OnMap Scale, Label It editor

- **Static Map Scale**: Defines a scaling factor for the duplicated labels on a static map without camera movement. When disabled (*Off*), no scaling will be used.

Fade

Figure 128: StandAlone fade, Label It editor

- **Fade**: Defines the fade effect parameters to be used with the duplicated labels. Available options are *Stand Alone* and *Controlled*. Stand Alone enables the user to define the fade parameters of the labels, while Controlled can be enabled to define the fade parameters when working with the Label Manager plug-in.
- **Fade On Time**: Defines a label fade effect, beginning at a relative point to the defined hop duration. An additional parameter will be enabled, *Time To Hop*, defining when the fade will occur.
- **Fade On Distance**: Defines a label fade effect, beginning at a relative distance from the hop final location.
- **Fade On Lat/Long**: Defines a label fade effect, beginning at a Longitude and Latitude offset from the hop final location. An additional parameter will be enabled, *Lat/Long*, defining the offset from in degrees.

Note: The *Fade On Distance* parameter is enabled only if *Overlay* is set to *Scaling*.
Step: Controls when the label will fade in and out in relation to an animation. In general the fade can be based on the camera distance (for example: captions are in view when distance is below 1000KM) or on timing in relation to the hop:

- Auto: When a label is of type point (added by the user) it will fade in and out based on distance to hop. If the label is of type place/region it will be faded in and out based on the distance set in Label Manager plug-in. If the hop is not close enough for the label to show and the label was added by the user it will be faded in based on hop timing and not distance.
- On Hop: Links the fade to the hop timing.
- Point 1/Point 2: These are reserved for labels where the distance is configured by the Label Manager plug-in.

Selected Label Timings: Sets one of the timing options for the fade to occur:

- At End: the label will fade after the animation stops and before it continues.
- Close To End: Fades the label just before the animation stops and just after the animation continues.
- Ahead: Fades the label before the animation stops and after the animation continues.
- Well Ahead: Fades the label long before the animation stops and long after the animation continues.

Label Priority: Sets the duplicated labels priority. This parameter is used when the number of labels on the screen is high and not all of the labels can be displayed. The priority levels define which labels will be displayed and which labels will be hidden:

- Auto: Priorities are set by the Label Manager plug-in.
- Normal, High: Priorities are set to normal and high.
- Always: Labels will always be displayed.

Practical Use

When adding a LabelIt plug-in, three containers will be added under the LabelIt container: CAPTION, BODY and TIP. Drag a text object under the CAPTION container. The BODY container is the pointer’s body and the TIP is the pointer’s end.

IMPORTANT! A text object under the label design must be named “label” to receive the name of the object from the CWMClient plug-in.
11.30 Label Manager

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Scene (button) -> Maps.
- Viz Artist 3: Built Ins -> Scene Plugins -> Maps.

The LabelManager plug-in is a scene plug-in, used for retrieving label information from Viz World Server and control the label’s appearance when working in an automatic label mode. The LabelManager generates labels, based on the defined label designs, according to parameters defined in the Navigator plug-in, Label It objects and 2D Label objects in the label designs.

Note: Scene plug-ins are added under the Scene Settings’ Plug-in tab.

This section contains information on the following topics:
- 11.30.1 Plug-in Description

11.30.1 Plug-in Description

The plug-in has four plug-in modes.

This section contains information on the following topics:
- Map Data
- Auto Labels
- Definitions
- Shadows
- Common Buttons
The Map Data tab defines settings for the label types received from the Viz World Server (WoS). These settings will be used when calculating label appearance in automatic mode. For every type of label selected in the list, set the required parameters.

- **Intersection Mode**: The Label Manager plug-in does a lot of calculations to handle labels intersection. It sorts the labels, applies the base presets and then turns the labels on and off to avoid collision. This parameter defines how intersections between labels will be handled:
 - Full: All intersection calculations are used.
 - Offsets: Only the label offsets are used when labels overlap.
 - None: Intersecting labels will not use an offset and will not be shifted to avoid labels overlap.

Note: This new plug-in enables the user to disable the label’s intersection option while the plugin is used in the scene for other reasons (like auto labels).

- **Type**: Sets the type of labels data to display.
- **Start View**: Defines the map size from which the labels of the selected type will appear during the Navigator animation. Parameter units are defined in the Definitions tab’s Units parameter.
- **Life Span**: Defines the duration of the label appearance on screen.
 - **Full**: The label appears at the defined Start View and remains on screen throughout the entire animation.
 - **Long**: The label remains on screen for a long period of time.
 - **Regular**: The label remains on screen for a medium period of time.
 - **Short**: The label remains on screen for a short period of time.
 - **Manual**: The label remains on screen until the defined End View value is reached.
- **End View**: Defines the map size at which the labels of the selected type will disappear. This parameter is only enabled if the Life Span is set to Manual. Parameter units are defined in the Definitions tab’s Units parameter.
Auto Labels (Up To): Defines the maximal amount of labels, of the selected type, that will be displayed at the same time.

Note: The Label Manager plug-in controls and manages the automatic labels appearance, using various parameters from different plug-ins. The Life span and Auto Label parameters will vary between labels during the animation (hop), to optimize labels display.

See Also

- **Common Buttons**

Auto Labels

Figure 131: Auto Labels, Label Manager editor

![Label Manager editor](image)

The Auto Labels tab defines if automatic labelling will be enabled and the label designs used for automatic labelling.

Auto Labels can be limited to specified countries and/or regions. The format of valid input is:

- `;` between locations.
- `/` or `\` to specify the path to the regions.

Note: Abbreviations can be used (after defining such list in the WoS)

Some examples:

- USA;Mexico
- USA\TX;Mexico;Canada
- United States of America\Florida;United States of America\Georgia;USA\NY

- **Disabled:** No automatic labelling will be used in the scene.
- **Enabled:** The scene will use automatic labelling based on the defined designs and labels holder container.

 - **Designs (text field):** Defines a path in Viz’s objects database that contains label designs. Automatic label designs are based on 2D Label and Label It plug-ins.
• **Designs (place holder):** Displays the selected (drag&drop) top container holding the label designs.

• **Holder (place holder):** Displays the selected (drag&drop) container that resides under the map. This container will be used by the Label Manager plug-in to store the scene's generated labels.

• **Limit Auto Labels:** Defines if the auto labels will be limited to a defined region/s or not. When enabled, the **Limit To Region** text field will be enabled.

• **Limit To Region:** Defines the region to which the auto labels will be generated.

• **Road Labels:** Defines the level (number) of road labels that will be displayed. Select the required option. When selecting an option other than None, additional parameters will be enabled:
 - **Labels Visibility (%):** Defines the alpha level of the road labels.
 - **Gap For Same Street Name (%):** defines the minimal gap between two labels for the same road (street).

• **Intersection Mode:** See Map Data.

See Also

• **Common Buttons**

Definitions

Figure 132: Definitions, Label Manager editor

The Definitions tab is used to set general parameters for Label Manager behaviour.

• **Intersection Mode:** See Map Data.

• **Screen Culling Mode:** Defines if a label will be drawn when it is outside the Viz renderer’s scope/view.
 - **Center:** The label object fades out when the center of the object is outside the Viz renderer’s scope/view.
 - **Anything:** The label object fades out when any part of the object is outside the Viz renderer’s scope/view.
 - **Complete:** The label object fades out when the entire object is outside the Viz renderer’s scope/view.
• **None**: No culling will be used. The labels will be drawn according to the map data parameters only.

• **Map Culling Mode**: Defines if a label will be drawn when it is outside the map area but inside Viz renderer’s scope/view.

• **Units**: Defines the units used to calculate map size for the Start View and End View parameters. Available options are Degrees, Kilometers, Miles and Nautical Miles, where the default measurement unit is Kilometer.

• **Fade Time (in fields)**: Defines the label’s fade duration in fields.

• **Labels in Overlay**: When enabled the labels will be in a different layer (dynamic image/layer). When disabled the labels will be on the map.

• **Debug Info Mode**: Shows different levels of debug information regarding the auto layout.

See Also

• **Common Buttons**

Shadows

Figure 133: Shadows, Label Manager editor

- **Intersection Mode**: See Map Data.
- **Cast Shadows**: Turns option to cast label shadows on/off.
- **Light Type**: Simulates different light types to cast the shadows.
- **Horizontal Angle**: Defines the horizontal angle position of the light.
- **Vertical Angle**: Defines the vertical angle position of the light.
- **Distance**: Defines light distance.
- **Shadow Plane**: Casts planar shadows on an imaginary plane and this option defines the spatial rotation of such a plane. Select one of the options:
 - **Straight**: The casted plane is parallel to the screen.
 - **Up Tilt**: The casted plane is tilted 45 degrees up from the screen.
 - **Down Tilt**: The casted plane is tilted 45 degrees down from the screen.
 - **Manual**: Manually set the pan and tilt values of the casted plane.
 - **World**: The casted plane is tangent to the world.
- **Tangent Point**: Pivot point for connection shadow to object.
• **Shadow Pan**: Manual Shadow Pan.
• **Shadow Tilt**: Manual Shadow Tilt.
• **Shadow Distance**: Distance of the shadow plane from the object.
• **Shadows Camera**: Select a camera for rendering the shadows. Since shadows are done by first rendering objects in a distant place and then overlaying their black silhouettes on the screen, this option defines the camera that will look at such distant place where objects are rendered. (Actually this camera is used for overlay).
• **Show Light Direction**: Visualize light direction on screen or not. The light direction is visualized by showing a lit ball or an arrow.

See Also

• **Common Buttons**

Common Buttons

• **Take Current Height**: Sets the view distance for labels. Values can be set in the relevant field or by pressing the Take Current Height button when playing the animation to where the labels are to appear.
• **Recalculate**: Regenerate auto labels.

11.31 Light On Globe

The plug-in can be found in the following folders:

• Viz Artist 2: Function -> Scene (button) -> Maps.
• Viz Artist 3: Built Ins -> Scene Plugins -> Maps.
The LightOnGlobe plug-in is a scene plug-in used for applying light sources to a globe object. The plug-in is required when designing a hops scene and the animation is going from the lighted area of the globe to the dark area of the globe. When using the LightOnGlobe plug-in, the lights will follow the camera animation. The light sources are Viz lights, and the lighting parameters should be adjusted in the Viz light editor. The LightOnGlobe plug-in will lock the light sources to the selected camera in the plug-in parameters.

Note: Scene plug-ins are added under the Scene Settings’ Plug-in tab.

This section contains information on the following topics:
- 11.31.1 Plug-in Description
11.31.1 Plug-in Description

Figure 135: Light On Globe editor

<table>
<thead>
<tr>
<th>LightOnGlobe Plugin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
</tr>
<tr>
<td>Key Light Type</td>
</tr>
<tr>
<td>Key Light Angle</td>
</tr>
<tr>
<td>Key Light Elevation</td>
</tr>
<tr>
<td>Distance Scale</td>
</tr>
<tr>
<td>Attenuation</td>
</tr>
<tr>
<td>Back Light Type</td>
</tr>
<tr>
<td>Back Light Angle</td>
</tr>
<tr>
<td>Back Light Elevation</td>
</tr>
<tr>
<td>Distance Scale</td>
</tr>
<tr>
<td>Fill Light Type</td>
</tr>
<tr>
<td>Fill Light Angle</td>
</tr>
<tr>
<td>Fill Light Elevation</td>
</tr>
<tr>
<td>Distance Scale</td>
</tr>
<tr>
<td>Camera Light Type</td>
</tr>
<tr>
<td>Camera Light Horizontal Shift</td>
</tr>
<tr>
<td>Camera Light Vertical Shift</td>
</tr>
<tr>
<td>Toggle Mode</td>
</tr>
</tbody>
</table>

- **Camera**: Sets the camera number for setting the light sources. The light sources will be locked to the selected camera number.
- **Key Light Type**: Sets the main light source type. Available types are Local, Spot, Infinite or None.
- **Key Light Angle**: Sets the angle of the key light source, which is the longitude value for the center of the light projected on the globe.
- **Key Light Elevation**: Sets the elevation of the key light source, which is the latitude value for the center of the light projected on the globe.
- **Distance Scale**: Sets a scale value on the globe distance so the light can be closer or further away.
- **Attenuation**: Sets the level of light attenuation.
- **Back Light Type**: Sets the back light source type. Available types are Local, Spot, Infinite or None.
- **Back Light Angle**: Sets the angle of the back light source, which is the longitude value for the center of the light projected on the globe.
- **Back Light Elevation**: Sets the elevation of the back light source, which is the latitude value for the center of the light projected on the globe.
- **Distance Scale**: Sets a scale value on the globe distance so the light can be closer or further away.
• **Fill Light Type:** Sets the fill light source type. Available types are Local, Spot, Infinite or None.

• **Fill Light Angle:** Sets the angle of the fill light source, which is the longitude value for the center of the light projected on the globe.

• **Fill Light Elevation:** Sets the elevation of the fill light source, which is the latitude value for the center of the light projected on the globe.

• **Distance Scale:** Sets a scale value on the globe distance so the light can be closer or further away.

• **Camera Light Type:** Sets the camera light source type. Available types are Local, Spot, Infinite or Off. The camera light will follow the camera movements.

• **Camera Light Horizontal Shift:** Sets the horizontal shift of the light source in relation to the camera location.

• **Camera Light Vertical Shift:** Sets the vertical shift of the light source in relation to the camera location.

• **Toggle Mode:** Sets the lights behavior mode during camera movement:
 - **Static:** All light sources, except for the camera light, will remain in a fixed location in relation to the globe.
 - **Dynamic:** All light sources will keep a fixed location in relation to the defined camera (that is it will move with the camera).

11.32 Locator Control

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The LocatorCtl plug-in is used to link an object positioned on one map to another map, showing its position. The object marking the point on the linked map must reside under a geographically referenced map. The linked object will show the position of the linked map or object on the map its parent map.

This section contains information on the following topics:

- **11.32.1 Plug-in Description**
11.32.1 Plug-in Description

Figure 136: Position type Map, Locator Control editor

<table>
<thead>
<tr>
<th>Position Type</th>
<th>Map</th>
<th>Navigator</th>
<th>WPosition</th>
<th>WPoint</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Container</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Size</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Size</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Size</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Size</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position Type defines the link between the object and the map. Available options are Map, Navigator, WPosition, WPoint and User.

Map links the object to a map, showing its entire area over the parent map.
- **Remote Container**: Defines the linked map container.
- **Control Size**: When disabled *(Off)*, the entire area of the linked map will be marked on the parent map. When enabled *(On)*, the size of the marked area can be controlled.
- **Basic Size**: Defines the percentage of the linked map area to be marked.
- **Min Size**: Defines the minimal size of the linked map area to be marked.
- **Max Size**: Defines the maximal size of the linked map area to be marked.

Figure 137: Position type Navigator, Locator Control editor

<table>
<thead>
<tr>
<th>Position Type</th>
<th>Map</th>
<th>Navigator</th>
<th>WPosition</th>
<th>WPoint</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Size</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Size</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Size</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Size</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Navigator links the object to a Navigator plug-in, showing its position on the parent map. The plug-in will locate the navigator container above it in the scene tree.
- **Control Size**: When disabled *(Off)*, the entire area of the linked map will be marked on the parent map. When enabled *(On)*, the size of the marked area can be controlled.
- **Basic Size**: Defines the percentage of the linked map area to be marked.
- **Min Size**: Defines the minimal size of the linked map area to be marked.
- **Max Size**: Defines the maximal size of the linked map area to be marked.
Figure 138: Position type WPosition, Locator Control editor

WPosition: links the object to a WPosition plug-in, showing its position on the parent map.
 • Remote Container: Defines the WPosition container.

WPoint links the object to a WPoint plug-in, showing its position on the parent map (The WPoint plug-in is used in Viz Weather).
 • Remote Container: Defines the WPoint container.

Figure 139: Position type user, Locator Control editor.

User enables the user to position the object on the map.
 • Map Center Longitude: Defines a Longitude value for the object.
 • Map Center Latitude: Defines a Latitude value for the object.
 • Tangent To Globe: When enabled (On), the controlled object will be rotated to match the globe surface.

Note: Tangent To Globe is only visible when the locator is under a globe object.

11.33 Map Builder

The plug-in can be found in the following folders:
 • Viz Artist 2: Function -> Scene (button) -> Maps.
 • Viz Artist 3: Built Ins -> Scene Plugins -> Maps.

Map Builder is a wizard like solution, with a simple and easy interface to create generic map scenes.

The Map Builder solution consists of 2 major parts:
1. Map Builder Plug-in – is a Viz Artist scene plug-in that builds a scene from a map template (*.mtpl) file, and saves the map scene changes to the map template file.

2. Map Builder Wizard – is a simple user interface that allows the user to create a scene descriptor (*.mtpl files) that represents a map scene and its containing elements. The wizard is accessible from within Viz Artist, and as a standalone application (see C:\Program Files\Vizrt\Common\Maps\MapBuilder.exe).

This section contains information on the following topics:
- 11.33.1 Plug-in Description
- 11.33.2 Map Builder Wizard

11.33.1 Plug-in Description

Figure 140: Map Builder editor

- **Map Template Filename**: Sets the name of the scene template file or click the browse button to select a file.
- **Build Scene**: Updates the scene tree with changes from the wizard.
- **Launch Wizard**: Runs the MapsBuilder wizard application.
- **Clean Scene**: Cleans the scene heirarchy.
- **Build Scene From Scratch**: Cleans the scene tree and rebuilds the scene heirarchy using the defined map template file.
11.33.2 Map Builder Wizard

IMPORTANT! Prior to using the wizard you need to import basic map elements.

In general, a map scene consists of a few basic elements, built in this order:

1. Create a Base Map.
2. Define the Navigation.
3. Create a Destination List.
4. Define label, region and border Designs.
5. Set the map Orientation.
6. Configure the design source and object pool Settings.
7. Refresh Thumbnails when re-launching the wizard to make changes.

This section contains information on the following topics:
- Base Map
- Navigation
- Destination List
- Designs
- Orientation
- Settings
- Refresh Thumbnails
- To import basic map elements
Base Map

Base Map is the Globe/Flat World Map in a specific style and data. The map created at this level is usually good for country level view.

Navigation

Defines the camera’s trajectory animation setting. It describes how the navigation animation should be (e.g. map origin + 3 destination animations, each “hop” animation based on 5 seconds, with stop points between destinations).

Destination List

Defines if each destination could be of type Geo Position Only, Map – Single Image or Pyramid of Maps.

A **Geo Position Only** destination will only use a Geo Position reference to the navigation. This mode is useful for destinations that are always far away from the base map. No map will be created in this mode (as it will save texture memory).
Note: When destination is set to Geo Position Only, it cannot be controlled by an external application such as Viz Trio or Viz Content Pilot.

Map – Single Image enables operators to control a destination using an external application (either a Map or Pyramid has to be selected). If the selected destination is used for a reference point, and it needs to be controlled, use this type (e.g. a far away starting point).

Pyramid of maps is used when the base map is not suitable for close-ups. A pyramid of maps built around the destination will smoothen the resolution difference between the base map and the destination target.

Each destination can consist of map elements (labels, regions and miscellaneous map elements), and if it is controlled (e.g. by Viz Trio or Viz Content Pilot) destinations can be linked to each other – to allow the user to easily control multiple destination elements. Linking is only a help to the user and has no effect on the scene.

Copying (duplicating) a destination is possible by selecting a destination and clicking the add button.

Note: The selected destination will not be duplicated if the destination type is Geo Position Only.
Designs

Describes how complex and complete the map elements designs will be, the Designs part is divided into 3 major groups:

- On map labels.
- On screen labels design.
- Regions & borders design.

Each design group can be customized; however, in addition they also have four (4) predefined presets: None, Simple, Detailed and Complete.

To distinguish on a country level using Region labels, it is possible to select the Country option as this will create two region label designs:

- Country – designs for selected countries.
- Any Region – for all other regions labels.

To distinguish between major towns, capitals and all other towns, it is possible to select the Town > 1M option as this will create three town label designs:

- Town > 1M: for major towns.
- Capital: for country capitals.
- Any Town: for all other town types.
Orientation

Orientation is a small map in the bottom corner of the screen, which shows a small world map and a marker showing what part of the world is currently being navigated to.

Settings

Allows the user to specify the design source and object pool path.

Designs source is an option that allows designs to be shared between scenes by using the Object Pool, instead of the in-scene designs.

Object Pool Path is an option to specify an alternative Viz Graphic Hub or Object Pool folder instead of the default object path (`/vizrt/VizCuriousMapsClient/MapBuilder`).

Note: A custom Object Pool Path must use the same hierarchy structure as the default object path (see `/vizrt/VizCuriousMapsClient/MapBuilder`).

Refresh Thumbnails

Refreshing Thumbnails must be done after manually editing a wizard generated scene and re-launching the wizard as all thumbnails of maps (Base Map, Destinations and Orientation) are lost. In order to refresh them press the F5 key, or click the refresh button in the toolbar.
To import basic map elements
1. Start Viz Artist.
2. Click Import and select Archives from the drop-list
3. Navigate to C:\Program Files\Vizrt\Common\Maps\Archives, and select the VizCuriousMapsClientObjects3x.via archive.
4. Click Import Archive.

11.34 Map Layers

The plug-in can be found in the following folders:
• Viz Artist 2: Function -> Container (button) -> Maps.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The MapLayers plug-in is used to expose map layers to an external application. Map layers are labels, regions, and so on.

This section contains information on the following topics:
• 11.34.1 Plug-in Description
11.34.1 Plug-in Description

Figure 141: Mode dynamic, Map Layers editor.

- **Mode**: Defines the layer maps mode Static and Dynamic.
 - **Static**: Enables maps to be imported to Viz Artist’s image library and saved with the scene.
 - **Dynamic**: Enables pyramid maps to be loaded from the cache and temporary folder. When the CWM Client plug-in receives a new map, all layers will be updated.
- **Texture Compression**: Sets the compression level for the texture (DXT5 is the highest compression level, which is less texture quality).
- **Texture Quality**: Sets linear for using the same image resolution in the entire zoom range, or Mipmap to change resolution according to the distance from the image (managed automatically in Viz Artist).
- **Edited Layer**: Sets the layer number for editing. Each layer is then assigned map properties to display.
- **Active**: Activates or disables the selected layer.
- **Container**: Assigns the container for holding the created layer map.
- **Flags**: Enables (On) the requested property to expose the map property or feature in the selected layer. Flags refer to all the settings from Base Map to Overlay Data.
- **Build Tiles**: Builds the map layers.
11.35 Map Layers Control

The plug-in can be found in the following folders:

The MapLayersControl plug-in is used to control map layers in an individual map and in map tiles (Pyramid or MapTiler tiles). The plug-in should reside on the CWM Client container which generates the maps and tiles.

This section contains information on the following topics:
- 11.35.1 Plug-in Description

11.35.1 Plug-in Description

Select an option to configure: Map or Tiles. Each can be enabled and configured separately. When Control is enabled, the layer parameters will be enabled. See Map Layers plug-in for the layers description.
11.36 Map Pyramid

The plug-in can be found in the following folders:
• Viz Artist 2: Function -> Container (button) -> Maps.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The MapPyramid plug-in is used to build a set of map layers for displaying an area in high resolution when zooming into a specific area. The maps are created as GeoImage (flat map) or Globe objects and placed under a low resolution map of the entire area for geographical referencing. The Map Tiler plug-in is also used for managing Pyramid object maps when used in a scene.

This section contains information on the following topics:
• 11.36.1 Plug-in Description

11.36.1 Plug-in Description

Mode dynamic, Map Pyramid editor

- **Mode**: Defines the maps mode. Available modes are Static and Dynamic.
 - **Static**: Enables the maps to be imported to Viz Artist’s image library and saved with the scene.
 - **Dynamic**: Enables the pyramid maps to be loaded from the cache and temporary folder. When the CWM Client receives a new map, the pyramid will be generated.

- **Map Style**: Defines the map style to be used for the pyramid maps:
 - **Source**: Uses the top CWM Client container (Map Tiler) style selection when creating the pyramid maps.
 - **Target**: Uses the hop CWM Client style selection when creating the pyramid maps.
 - **Satellite (Split)**: Splits the pyramid layers style, based on image latitude and longitude size. If the image size is smaller than the threshold the target style
will be used, if larger then then source style will be used. Additionally, it is possible to turn on the color correction option in Pyramid Control which will color correct the target image to match the source images.

- **Max Pyramid Height**: Defines the maximal number of maps that will be created in the pyramid. The optimal number of pyramid maps is calculated by the MapPyramid plug-in. If the optimal number exceeds the **Max Pyramid Height** value, then the plug-in will generate the maximal number defined.

- **Pyramid Factor**: Calculates the number of maps required defining the size factor between the maps of the pyramid.

- **Auto Hide Local Texture**: Defines if the map created by the CWM Client plug-in, located on the MapPyramid container, will be turned off when the texture resolution of that map is lower than the Globe or GeoImage map tiles resolution. If it is enabled (On), the maps with lower resolution will be turned off automatically by the MapPyramid plug-in. If it is disabled (Off), the MapPyramid will not turn off the low resolution maps.

- **Apply Fade**: Defines if the maps used in the pyramid will use soft edges. Available options are Off, Target and Pyramid.
 - **Off**: No soft edges will be used. The transition between the maps will be visible (the maps will have sharp edges).
 - **Target**: Sets the last map (target) to have soft edges only.
 - **Pyramid**: Sets all maps in the pyramid to have soft edges.

- **Fade Range**: When Apply Fade parameter is used, the Fade Range is used to set the fade level (the area of the image that the fade will be applied to).

- **Build Tiles**: Triggers a rebuild of the pyramid maps.

11.37 Map Tiler

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The Map Tiler plug-in is used to build a set of map tiles for displaying an area in high resolution. The maps are created as GeoImage (flat map) or Globe objects and placed under a low resolution map of the entire area for geographical referencing. The Map Tiler plug-in is also used for managing Pyramid object maps when used in a scene (see the Map Pyramid plug-in for more information).

IMPORTANT! Do not modify the container hierarchy under the MapTiler container.

This section contains information on the following topics:

- **11.37.1 Plug-in Description**

See Also

- **11.23 GeoImage**
• 11.26 Globe
• 11.36 Map Pyramid

11.37.1 Plug-in Description

The plug-in has five tabs; Tiling, Texture, Terrain, Destination and Advanced. Each tab relates to different tile parameters.

This section contains information on the following topics:
- Tiling
- Texture
- Terrain
- Destination
- Common Buttons

Tiling

Figure 144: Tiling tab, Map Tiler editor

<table>
<thead>
<tr>
<th>Selected Region</th>
<th>Texting</th>
<th>Terrain</th>
<th>Destinations</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>Selected Map</td>
<td>Region List</td>
<td>Long Lat</td>
<td></td>
</tr>
<tr>
<td>View</td>
<td>Outer Space</td>
<td>Space</td>
<td>World</td>
<td>Continent</td>
</tr>
<tr>
<td>Geometry Type</td>
<td>Region</td>
<td>Manual</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>Globe</td>
<td>Flat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tessellation</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap (%)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply Fade</td>
<td>Off</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyramid Offset</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Selected Region**: Defines the area of the map for which the tiles will be created.
 - **World**: Creates tiles for the entire world.
 - **Selected Map**: Creates tiles for the area of the selected map in the CWMClient plug-in attached to the MapTiler container.
 - **Region List**: When Region List is selected, a list of regions will be displayed. An item from the list can be selected to create map tiles for the selected area.
 - **Long Lat**: Sets the Longitude and Latitude minimum and maximum values. The map tiles will be created for the defined area. When Long Lat option is selected, additional fields will be enabled:
 - **West**: Sets the Longitude value for the western edge of the map.
 - **East**: Sets the Longitude value for the eastern edge of the map.
 - **South**: Sets the Latitude value for the southern edge of the map.
 - **North**: Sets the Latitude value for the northern edge of the map.
• **View:** Defines the point of view (Outer Space, Space, World, Continent, Country, Large Region, Region, Manual and Total) of the area (that is the amount of zoom to be used). The higher the point of view, the lower the number of tiles will be and lower resolution.
 - When set to Manual, the Pixels Per Degree parameter will be enabled.
 - When set to Total, the Total Pixels parameter will be enabled.

• **Pixels Per Deg:** Defines the resolution of the map. Resolution is determined by the number of pixels per degree. The higher the number is the higher the resolution is.

• **Total Pixels:** Defines the total number of pixels for all the tiles combined.

• **Geometry Type:** Selects the object type of the created tiles.
 - **Globe:** Creates the tiles using the Globe plug-in.
 - **Flat:** Creates the tiles the Geolmage plug-in.

• **Radios/Map Size:** Sets the size (in Viz units) of the globe or map tiles (all together).

• **Tessellation:** The number of polygons used in the object. The higher the number is, the smoother the object is drawn.

• **Apply Fade:** Uses soft edges for the tiles. When fade is applied it will be applied to the outer edges of the selected area which are the outer tile edges. The inner edges of the tiles will not be soft. This option is used when trying to apply a very large area of the world, in high resolution, over a world map with low resolution.

• **Fade Range:** Defines the fade (softness) size.

• **Pyramid Offset:** Defines the offset between the pyramid map layers, defined to avoid z-drawing problems. Increase the default value if the layers are not drawn correctly. Units are 1/10000 cm.

Texture

Figure 145: Texture tab, Map Tiler editor

<table>
<thead>
<tr>
<th>Map Tiler Plugin (10.1.3)</th>
<th>Tiling</th>
<th>Texture</th>
<th>Terrain</th>
<th>Destinations</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture Compression</td>
<td>None</td>
<td>DXT1</td>
<td>DXT3</td>
<td>DXT5</td>
<td></td>
</tr>
<tr>
<td>Texture Quality</td>
<td>Linear</td>
<td>Mipmap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map Status</td>
<td>2 tiles will be required (each 2048x2048 pixels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Tiles</td>
<td>Change All Maps</td>
<td>Build Tiles (Force New)</td>
<td>Change All Maps (Force New)</td>
<td>Calculate Tiles Info</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Texture Compression:** Sets the compression level for the texture (DXT5 is the highest compression level which is less texture quality).

- **Texture Quality:** When set to Linear the same image resolution will be used in the entire zoom range. When set to Mipmap the resolution is changed according to the distance from the image (managed automatically in Viz Artist).
Terrain

Figure 146: Terrain tab, Map Tiler editor

- **Build Terrain**: Builds terrain data for the created tiles
- **Smooth Terrain**: Smoothens terrain edges so they blend with the base map surface. When enabled (On) the **Terrain Smoothing Factor** will be enabled.
- **Terrain Smoothing Factor**: Sets the percentage of the smoothed area.
- **Terrain Height Scale**: Sets the scaling factor for terrain height. The higher the factor is, the more extreme the terrain will be.
- **Terrain Resolution**: Sets the total terrain resolution for all tiles. A high resolution value will result in a more detailed terrain (affecting performance).

Destination

Figure 147: Destination tab, Map Tiler editor

- **Texture Size**: Sets the base size for the CWM clients in the scene. Select one of the preset sizes or Manual.
- **Texture Width**: Sets the base texture width (in pixels).
- **Texture Height**: Sets the base texture height (in pixels).
- **Sub Tessellation**: When building Globe objects, this parameter will determine the sub tessellation value in the Globe objects.
Advanced

Figure 148: Advanced tab, Map Tiler editor

- **Map Only**: Builds only the map tiles, without adding other Viz Curious Client plugins (Navigator, etc.).

Common Buttons

- **Map Status**: Displays plug-in status messages. When configuring the tiles, the Map Status field will display the number of tiles required and tile size according to the current plug-in setup.
- **Build Tiles**: Build the geo-reference map and tiles.
- **Change All Maps**: Builds the geographical reference map, tiles and applies style changes made in the CWM Client plug-in to all child containers (recursively) under the MapTiler container.
- **Build Maps (Force New)**: Builds the geographical reference map and tiles without checking the cache for existing maps (from the server).
- **Change All Maps (Force New)**: Builds the geographical reference map, tiles and applies style changes made in the CWM Client plug-in to all child containers (recursively) under the Map Tiler container, without checking the cache for existing maps (from the server).
- **Calculate Tiles Info**: Calculates the tiles information, without building the tiles, and displays it in the Map Status field.

11.38 Mute

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Tools.
- Viz Artist 3: Built Ins -> Container Plugins -> Tools.

The Mute plug-in is used to determine if a container will be drawn or not. The difference between using the Mute plug-in and setting the visibility off is that when using the plug-in only containers with the plug-in will not be drawn, but all child objects will be drawn and the geometry properties will be used in the hierarchy (geographical reference, and so on). When setting the visibility off the entire container and its child containers will be set off and not be used in any way.
This section contains information on the following topics:
• 11.38.1 Plug–in Description

11.38.1 Plug–in Description

Figure 149: Mute editor

• Draw Geometry: When enabled (On), the geometry will be drawn. When disabled (Off), the geometry will not be drawn but its child containers will be drawn.

11.39 NavCom

The plug–in can be found in the following folders:
• Viz Artist 2: Function -> Container (button) -> Maps_Adv.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps-Adv.

The NavCom plug–in is used for controlling the Navigator plug–in. The plug–in is an example showing how to externally control the Navigator plugin when special applications should be used to control the scene. An example for a special case where external control of the Navigator plugin is required is Elections. When using Viz 3.x scripting, complicated logics and commands can be used with the NavCom plug–in.

This section contains information on the following topics:
• 11.39.1 Plug–in Description

See Also
• NavCom Scripting

11.39.1 Plug–in Description

The NavCom plug–in has three tabs; Commands, Control and Advanced.

This section contains information on the following topics:
• Commands
• Control
• Advanced
Commands

The Commands tab is used for communicating with the Navigator plugin in means of sending formatted commands and receiving formatted responses from the Navigator plugin:

Figure 150: Commands tab, NavCom editor

- **Command**: Text field for the requested command. The NavCom plug-in receives predefined, fixed syntax, commands and returns a reply from the Navigator. The format of the commands and the returned values is as follows:

 Mouse To Lon Lat: convert screen coordinates to Long/Lat values from the map:

 Command: MTLL x y
 Response: lon lat

 Example: Command: MTLL 360 288, Response: -116.998 38.088

 Mouse To Region: return the region name in which the given screen coordinates reside:

 Command: MTR x y
 Response: CountryID “Country Name” RegionID “Region Name” SubRegionID “Sub Region Name”

 Example: Command: MTR 360 288, Response: 1000000000003600 “United States of America” 1000000000038901 “Texas” 1000000000111302 “Atascosa County”

 Fly To Region ID: Trigger a Navigator animation from the current location to the sent region (RegionID):

 Command: FTRID RegionID

 Example: Command: FTRID 1000000000003600 Fly To Country:

 Fly To Country: Trigger a Navigator animation from the current location to the sent country (country name):

 Command: FTC “country name”

 Example: Command: FTC “united states of America”

 Fly To Region: Trigger a Navigator animation from the current location to the sent region (Region name):

 Command: FTR “country” “Region”
Example: Command: FTR "united states of America" "Texas"

Fly To Sub Region: Trigger a Navigator animation from the current location to the sent sub region (by name):
 Command: FTSR "country" "Region" "Sub Region"

Example: Command: FTSR "united states of America" "Texas" "young county"

Fly To Lon Lat Level: Trigger a Navigator animation from the current location to the sent level area (country, region, or sub region) that the long/lat data resides in:
 Message: FTLLL lon lat level

Note: Levels are: 0 = Country, 1 = Region, 2 = Sub Region

Example: Command: FTLLL -116.998 38.088 1

- Response: Contains the reply returned from the Navigator plug-in. The format of the reply is defined in the Advanced tab.
- Immediate Response: Defines if the command will be sent while typing (every change to the command field will sent the command to Navigator), or only after pressing the Execute Command button.

Control

The Control tab is used to directly control the Navigator plug-in by changing the values of the parameters

Figure 151: Control tab, NavCom editor

<table>
<thead>
<tr>
<th>NavCom Plugin (10.1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lon</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

- **Lon**: Sets the longitude value for the Navigator plug-in. The Navigator camera will move to the specified longitude value.
- **Lat**: Sets the latitude value for the Navigator plug-in. The Navigator camera will move to the specified latitude value.
- **Distance**: Sets the Navigator distance from the map. The Navigator camera will move to the specified distance value.
• **Pan**: Sets the pan value of the Navigator camera.
• **Tilt**: Sets the tilt value of the Navigator camera.

Note: The Navigator control parameters effect the Navigator immediately.

Advanced

The Advanced tab is used for defining the **NavCom** plug-in’s general behavior patterns.

Figure 152: Advanced, **NavCom** editor

- **Shape File Support**: Defines if the **NavCom** plug-in will include shape objects information in the respond. The Shape objects must reside under the NavCom container. When the Shape File Support is Limited, the plug-in will scan the shape files below the container. When a command is received, the NavCom plug-in will return, in the response string, information about the shapes that overlap the requested data in the command. When the Shape File Support is Only, the plug-in will scan the shape files below the container. When a command is received, the NavCom plug-in will return, in the response string, only the information about the shapes that overlap the requested data in the command.

- **Limit Picking**: Limits the geographical area that the **NavCom** plug-in will perform any of the commands on. When Limit Picking is enabled the Limit to Country parameter will be enabled.

- **Limit to Country**: Sets the country name. If the requested data in the command does not exist for the defined country area, the command will not be executed. Only commands relating to points within the country area will be executed.

- **Shared Memory Prefix**: This parameter should be used when using more than one **NavCom** plug-in in the scene, and when using scripting to send and receive information from these plug-ins. In each NavCom plug-in, set the Shared Memory Prefix to a different prefix (up to four) to distinguish between the data sent to each plug-in.

- **Protocol Mode**: Defines the data displayed in the Response field.
 - **Full**: Includes data on names and IDs for countries, regions and sub-regions.
- **Name:** Includes data on names for the countries, regions and sub-regions.
- **ID:** Includes only ID data (as defined in the Viz World Server) for the countries, regions and sub-regions.
- **Protocol Separator:** Defines the separating character between the Response data. The defined separator will be used between country and region, region and sub-region, and so on.
- **Use Quotes:** Defines if the response string will be quoted or not.
- **Suffix FIPS:** Used for USA regions and sub-regions.
- **Execute Command:** When pressed, the defined command will be sent from the NavCom to the Navigator plug-in.
- **Initialize:** This button is used when using shape file support. If the shape objects under the NavCom container is changed, press the initialize button to re-scan the shape objects.

NavCom Scripting

Viz 3.X scripting ability is a powerful tool for implementing complex logic into a scene. In a Navigator scene, NavCom can be used in the scripts to enable such advanced Navigator operations. The following script example demonstrates how to send and receive data from the Navigator plug-in through to the NavCom plug-in.

Example: Script example: main.txt

```plaintext
dim level as Integer
dim ignore as Integer
dim CurCountry as string
dim CurCountryId as string
dim CurState as string
dim CurStateId as string
dim CurCounty as string
dim CurCountyId as string

Sub UpdateCurrent(temp As String)
dim position as Integer
dim temp2 as String
println temp
CurCountryId = temp.left(16)
position = temp.Find("\"")
temp = temp.GetSubstring(position+1,temp.Length-(position+1) )
temp2 = temp
position = temp2.Find("\"")
CurCountry = temp2.Left(position)
println "<" & CurCountryId & "><" & CurCountry & ">>
position = temp.Find("\"")
CurStateId = temp.left(16)
position = temp.Find("\"")
temp = temp.GetSubstring(position+2,temp.Length-(position+2) )
CurState = temp.left(16)
println "><" & CurState & ">>
position = temp2.Find("\"")
CurCountyId = temp.left(16)
position = temp.Find("\"")
temp = temp.GetSubstring(position+2,temp.Length-(position+2) )
CurCounty = temp.left(16)
println "><" & CurCounty & ">>

Chapter 11: Maps Plug-ins

192
position = temp2.Find("\\")
CurCounty = temp2.Left(position)
println "<" & CurCountyId & ">" & CurCounty & ">"

End Sub

Sub OnInit()
ignore = 0
level = 1
if Scene.Map.ContainsKey("MTR") = false Then
Scene.Map.CreateKey("MTR")
End If
if Scene.Map.ContainsKey("FTRID") = false Then
Scene.Map.CreateKey("FTRID")
End If
if Scene.Map.ContainsKey("FTC") = false Then
Scene.Map.CreateKey("FTC")
End If
if Scene.Map.ContainsKey("FTR") = false Then
Scene.Map.CreateKey("FTR")
End If
if Scene.Map.ContainsKey("FTSR") = false Then
Scene.Map.CreateKey("FTSR")
End If
if Scene.Map.ContainsKey("FTLLL") = false Then
Scene.Map.CreateKey("FTLLL")
End If
if Scene.Map.ContainsKey("MTR_REPLY") = false Then
Scene.Map.CreateKey("MTR_REPLY")
End If
if Scene.Map.ContainsKey("FTRID_REPLY") = false Then
Scene.Map.CreateKey("FTRID_REPLY")
End If
Scene.Map.RegisterChangedCallback("MTR_REPLY")
System.Map.RegisterChangedCallback("REGION_L")
End Sub

Sub OnSharedMemoryVariableChanged(map As SharedMemory, mapKey As String)
println mapKey
dim temp as String
If mapKey = "REGION_L" Then
println "ignore pre"
ignore = 1
else If mapKey = "MTR_REPLY" Then
println System.Map["MTR_REPLY"]
UpdateCurrent(temp)
println System.Map["REGION_L"]
if System.Map["REGION_L"] = "1" then
Scene.Map["FTRID"] = CurCountryId
elseif System.Map["REGION_L"] = "2" then
Scene.Map["FTRID"] = CurStateId
elseif System.Map["REGION_L"] = "3" then
Scene.Map["FTRID"] = CurCountyId
End If
End If
If mapKey = "MTLL_REPLY" Then
println Scene.Map["MTLL_REPLY"]
End If
End Sub

sub OnLButtonDown()
dim temp as String
if System.MouseX < (System.RenderWindowWidth: 120 ) then
11.40 NavFade

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The NavFade plug-in is used for defining the visibility of an object that the NavFade is attached to in a Navigator scene. The Navigator point of view (distance from the map) will determine when the object will become visible. The NavFade uses an Alpha plug-in to control the object’s appearance. The Alpha plug-in will be added automatically when adding NavFade to the container.

This section contains information on the following topics:
- 11.40.1 Plug-in Description

11.40.1 Plug-in Description

The NavFade plug-in has four fade modes; Height, Hops, Distance and Angle.

This section contains information on the following topics:
- Height
- Hops
- Distance
- Angle

Height

The object will fade in or out depending on camera height (above the map).
Figure 153: Fade range set to Below, NavFade editor

- **Fade Time:** Defines the fade transition duration in fields.
- **Visibility Range:** Defines how the fade point is calculated. Available options are Below, Above and Range.
  - **Below:** The object will be visible when the defined height is higher than the current Navigator distance from the map.
  - **Above:** The object will be visible when the defined height is lower than the current Navigator distance from the map.
  - **Range:** The object will be visible between the defined low and high values.
- **Set Height:** When clicked, the current camera height will be inserted to the height field.
- **Set Range High:** When clicked, the current camera height will be inserted to the High range field.
- **Set Range Low:** When clicked, the current camera height will be inserted to the Low range field.

**Hops**

The object will fade in or out depending on the defined hop point and the animation time to/from the selected hop point.
Figure 154: Hops, *NavFade* editor

- **Fade Time (Fields)**: Defines the fade transition duration in fields.
- **Hop Mode**: defines if the NavFade plug-in will effect the manually selected hop or if the hop will be auto selected when the designs copied by CWM client.
- **Hop To Link**: Sets the number of the hop points that *NavFade* will use as a reference. When animating to and from the selected hop, the object will appear/disappear.
- **Multi Hop**: When enabled, all hops which number is higher than the selected hop will be considered as the selected hop. defines if the NavFade plug-in will effect the manually selected hop or if the hop will be selected by the NavFade plug-in.
- **Time to Hop (%)**: Sets the point in which the object will appear/disappear. The time is set as a percentage of the hop duration.

**Height**

The object will fade in or out depending on the height of the camera above the map.

Figure 155: Fade range set to Below, *NavFade* editor

- **Fade Time**: Defines the fade transition duration in fields.
• **Fade Range:** Defines how the fade point is calculated. Available options are Below, Above and Range.
  • **Below:** The object will be visible when the defined height is higher than the current **Navigator** height above the map.
  • **Above:** The object will be visible when the defined height is lower than the current **Navigator** height above the map.
  • **Range:** The object will be visible between the defined low and high values.
  • **Height:** Defines the height value that the NavFade plug-in will use as the show/hide point of the object when Fade Range parameter is set to Below or Above.

**Figure 156:** Fade range set to Range, **NavFade** editor

<table>
<thead>
<tr>
<th>Fade Mode</th>
<th>Height</th>
<th>Hops</th>
<th>Dist</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fade Invert</td>
<td>Off</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fade Time (Fields)</td>
<td>50.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility Range</td>
<td>Below</td>
<td>Above</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>10.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>10.0</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

  • **Low:** Sets the lower value of the height range that the object will be visible in. If the current **Navigator** height is higher than the low value, the object will be visible.
  • **High:** Sets the higher value of the height range that the object will be visible in. If the current **Navigator** height is lower than the high value, the object will be visible.
  • **Set Height:** The current **Navigator** height value will be copied to the **Height** parameter. This button will only affect the plug-in when Fade Range is set to Below or Above.
  • **Set Range High:** The current **Navigator** height value will be copied to the **High** parameter. This button will only affect the plug-in when Fade Range is set to Range.
  • **Set Range Low:** The current **Navigator** height value will be copied to the **Low** parameter. This button will only affect the plug-in when Fade Range is set to Range.

**Distance**

The object will fade in or out depending on the distance from the map.
Chapter 11: Maps Plug-ins

Figure 157: Fade range set to Below, NavFade editor

- **Fade Time**: Defines the fade transition duration in fields.
- **Fade Range**: Defines how the fade point is calculated. Available options are Below, Above and Range.
  - **Below**: The object will be visible when the defined distance is higher than the current Navigator distance from the map.
  - **Above**: The object will be visible when the defined distance is lower than the current Navigator distance from the map.
  - **Range**: The object will be visible between the defined low and high values.
- **Distance**: Defines the distance value that the NavFade plug-in will use as the show/hide point of the object when Fade Range parameter is set to Below or Above.

Figure 158: Fade range set to Range, NavFade editor

- **Low**: Sets the lower value of the distance range that the object will be visible in. If the current Navigator distance is higher than the low value, the object will be visible.
- **High**: Sets the higher value of the distance range that the object will be visible in. If the current Navigator distance is lower than the high value, the object will be visible.
- **Set Distance**: The current Navigator distance value will be copied to the Distance parameter. This button will only affect the plug-in when Fade Range is set to Below or Above.
- **Set Range High**: The current Navigator distance value will be copied to the High parameter. This button will only affect the plug-in when Fade Range is set to Range.
• **Set Range Low**: The current Navigator distance value will be copied to the *Low* parameter. This button will only affect the plug-in when Fade Range is set to *Range*.

**Angle**

The object will fade in or out depending on the angle between the camera and the map.

**Figure 159**: Fade range set to Below, *NavFade* editor

<table>
<thead>
<tr>
<th>Fade Mode</th>
<th>Height</th>
<th>Hops</th>
<th>Dist</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fade Invert</td>
<td>Off</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fade Time (Fields)</td>
<td>50.0 R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility Range</td>
<td>Below</td>
<td>Above</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>45.0 R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Fade Time**: Defines the fade transition duration in fields.
• **Fade Range**: Defines how the fade point is calculated. Available options are Below, Above and Range.
  - **Below**: The object will be visible when the defined angle is higher than the current Navigator angle between the camera and the map.
  - **Above**: The object will be visible when the defined angle is lower than the current Navigator angle between the camera and the map.
  - **Range**: The object will be visible between the defined low and high values.
• **Angle**: Defines the angle value that the NavFade plug-in will use as the show/hide point of the object when Fade Range parameter is set to Below or Above.

**Figure 160**: Fade range set to Range, *NavFade* editor

<table>
<thead>
<tr>
<th>Fade Mode</th>
<th>Height</th>
<th>Hops</th>
<th>Dist</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fade Invert</td>
<td>Off</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fade Time (Fields)</td>
<td>50.0 R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility Range</td>
<td>Below</td>
<td>Above</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>10.0 R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>10.0 R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Low**: Sets the lower value of the angle range that the object will be visible in. If the current Navigator angle is higher than the low value, the object will be visible.
• **High**: Sets the higher value of the angle range that the object will be visible in. If the current Navigator angle is lower than the high value, the object will be visible.
• **Set Angle**: The current Navigator angle value will be copied to the angle parameter. This button will only affect the plug-in when Fade Range is set to Below or Above.

• **Set Range High**: The current Navigator angle value will be copied to the High parameter. This button will only affect the plug-in when Fade Range is set to Range.

• **Set Range Low**: The current Navigator angle value will be copied to the Low parameter. This button will only affect the plug-in when Fade Range is set to Range.

### 11.41 NavFinder

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The NavFinder plug-in is used for setting hop points over a given map. The NavFinder must reside under a Navigator plug-in container and a map.

This section contains information on the following topics:

- **11.41.1 Plug-in Description**

#### 11.41.1 Plug-in Description

- **Hop Point**: Sets the hop point in the hop sequence. Note that the animation will be built in the same sequential order as the list of Hop Points (Map-Start, Destination-1, Destination-2, and so on). If two hops use the same Hop Point, the animation will not work properly.

- **Position Source**: This parameter defines how the hop location will be set. Available options are Map, Absolute, 3D Region and Link.

- **Goto Map**: Jumps to the defined hop point on the map.

- **Take Current Values**: Takes the current position and uses that as the hop position. This option is normally used with interactive mode in the Navigator plug-in. The user moves the object to the required position and sets the values for the NavFinder.

- **Fly To Map**: Creates an instant animation and run from the current map location to the current hop point defined by the NavFinder plug-in. This feature is active only if the Interactive Anim parameter in the Navigator plug-in is enabled (On).

- **Get Map**: The user can navigate manually to any destination and by pressing the Get Map button, the currently viewed map will be used. CWMclinet must be on the same container and if a pyramid plugin is used, the pyramid layers will be built.

- **Add Linked Hop**: Adds a hop (container with NavFinder set to Link) under the current NavFinder container. See Link tab description for more information.
Tip: Take Current Values can be used in interactive mode. The user can position itself using the mouse and then tell NavFinder to use the current values.

This section contains information on the following topics:
- Map
- Absolute
- 3D Region
- Link

Map

Figure 161: Map, NavFinder editor

The Position Source Map uses the current location from the map (center of the screen values) and adds offsets for fine tuning.

- **Fit To Screen By:** Defines what the end frame of the animation (hop) will be. When the hop is defined as a 3D Region object on the map, the animation will end when the bounding box of the object fills the frame. Available parameters for defining how the bounding box will be calculated are Width, Height, Min, Max and Average.
  - **Width:** Uses the width of the object’s bounding box to calculate the last frame of the hop animation.
  - **Height:** Uses the height of the object’s bounding box to calculate the last frame of the hop animation.
  - **Min:** Uses the minimal value between the width and the height of the object to calculate the last frame of the hop animation.
  - **Max:** Uses the maximal value between the width and the height of the object to calculate the last frame of the hop animation.
  - **Average:** Uses the average value between the width and the height of the object to calculate the last frame of the hop animation.
• **Longitude offset**: Defines Longitude offset based on the current position.
• **Latitude offset**: Defines Latitude offset based on the current position.
• **Distance offset (%)**: Changes the distance zoom from the map (zoom in or out).
• **Pan**: Sets a pan value for the camera.
• **Tilt**: Sets a tilt value for the camera.

---

**Note:** Pan and Tilt parameters will be disabled unless the *Pan & Tilt Animation* parameter in the Navigator plug-in is enabled (*On*).

---

### Absolute

**Figure 162: Absolute, NavFinder editor**

![NavFinder Plugin (10.1.0)](image)

<table>
<thead>
<tr>
<th>Hop Point</th>
<th>Map-Start</th>
<th>Destination-1</th>
<th>Destination-2</th>
<th>Destination-3</th>
<th>Destination-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Source</td>
<td>Map</td>
<td>Absolute</td>
<td>3D Region</td>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>0.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>0.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance offset (%)</td>
<td>10.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>400.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>0.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilt</td>
<td>0.0</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Absolute** sets the Longitude and Latitude values of the hop point location. Changes the Distance and Distance Zoom parameters:
• **Longitude**: Defines the Longitude for the hop position.
• **Latitude**: Defines the Latitude for the hop position.
• **Distance**: Changes the distance from the map.
• **Pan**: Sets a pan value for the camera.
• **Tilt**: Sets a tilt value for the camera.

---

**Note:** Pan and Tilt parameters will be disabled unless the *Pan & Tilt Animation* parameter in the Navigator plug-in is enabled (*On*).
3D Region

Figure 163: 3DRegion, NavFinder editor

3D Region uses the current location from the 3D Region plug-in (center of the region values). Add offsets for fine tuning.

See the Map section for references to the Position Bounding Box, Offset, Distance, Pan and Tilt parameters.

Note: Pan and Tilt parameters will be disabled unless the Pan & Tilt Animation parameter in the Navigator plug-in is enabled (On).
Link

**Figure 164: Link, NavFinder editor**

The **Link** mode is used when one hop resides as a child of another hop. The child hop is set to link. When changing the top hop, the child hop will change accordingly, maintaining the same animation that was created during the design.

- **Longitude Offset**: Sets an offset from the calculated hop longitude location after the top hop was changed.
- **Latitude Offset**: Sets an offset from the calculated hop latitude location after the top hop was changed.
- **Distance Offset (%)**: Sets an offset from the calculated distance after the top hop was changed.
- **Pan Offset**: Sets an offset from the calculated pan after the top hop was changed.
- **Tilt Offset**: Sets an offset from the calculated tilt after the top hop was changed.

See the Map section for references to the Position Bounding Box, Offset, Distance, Pan and Tilt parameters.

11.42 **Navigator**

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Maps.
205 Chapter 11: Maps Plug-ins

Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The Navigator plug-in enables the user to create realistic animations from one point to another on the map (for example fly over a flat map or globe). It is also used for navigating on a map (moving the camera) to a defined location using pan and tilt values.

This section contains information on the following topics:

- 11.42.1 Plug-in Description

11.42.1 Plug-in Description

The plug-in has four main plug-in editor views; Camera, Animation, Miscellaneous and Advanced. In addition the plug-in has two common features that applies for all editor views.

Note: Only containers with a NaFinder plug-in will be refreshed.

This section contains information on the following topics:

- Camera
- Animation
- Miscellaneous
- Advanced
- Common Buttons
- Known issue(s)

Camera

Figure 165: Camera (Position), Navigator editor

The Position button displays the camera position parameters.

- **Camera**: Defines the camera that will be affected by the position parameters.
- **Longitude**: Defines the Longitude camera position on the map/globe.
- **Latitude**: Defines the Latitude camera position on the map/globe.
- **Distance**: Defines the Camera distance from the map.
- **Pan**: Defines the Camera pan value.
• **Tilt**: Defines the Camera tilt value

**Figure 166**: Camera (Advanced), Navigator editor

The **Advanced** button displays the advanced camera parameters.

- **Roll**: set the roll value of the camera. This parameter is enabled only if the Keep The Horizen Horizontal parameter is set OFF.

- **Keep The Horizen Horizontal**: When set on the horizon will always be horizontal and roll movement will allow animation.

- **Clipping Plane Control**: Defines the distance range that will be drawn by the camera. Objects located closer to the camera than the *Near* parameter and objects located farther that the *Far* parameter will not be drawn.
  - **Static (Viz)**: Draws the objects within the clipping plane values defined in Viz. For Viz 2.x see Setup->Camera->Camera Clipping Plane. For Viz 3.x see Scene Settings->Renderer->Camera Clipping Plane.
  - **Navigator**: Adjusts the clipping plane values according to the camera position. This is automatically done by the Navigator plug-in based on the *Near Distance* and *Far Distance* parameters.

- **Near Distance (%)**: Defines the percentage of the camera distance from the map, which will be used as the Near distance of the clipping plane.

- **Far Distance (%)**: Defines the percentage of the camera distance from the map, which will be used as the Far distance of the clipping plane.
Animation

Figure 167: Animation, Basic (Pause Points), Navigator editor

The Animation button displays the camera animation parameters. There are two parameter tabs: Basic and Advanced.

The Basic tab:

- **Number of Hop Points**: Sets the number of key frames (hops) used in the animation.
- **Hop Duration Mode**: Defines the time gap between two key frames.
  - **Fixed**: Uses the same duration as set in the Hop Duration parameter for all hops.
  - **Auto**: Automatically calculates the duration of the animation between hops. Minimal hop duration will be based on the Hop Duration parameter and the Hop Min Time parameter.
  - **Manual**: Disables the Hop Duration parameter. Enables the user to set hop duration manually in the stage editor.
- **Hop Duration**: Sets the animation length, between one hop to another, in seconds.
- **Hop Min Time (%)**: Sets a minimal time for each hop when Hop Time Mode is set to Auto.
- **Stop Type**: Defines the animation behavior at each hop.
  - **Disabled**: Enables the animation to only use stage properties.
  - **Stop Points**: Enables the animation to stop at each hop point and wait for a continue command.
  - **Pause Points**: Adds a pause point to each hop. An additional parameter, Pause Time, will be added to define the pause length in seconds.
  - **Flyover**: Simulates a flight pass over the hop points in a spline path, using the Flyover Minimal Height parameter. When selected, additional parameters will be enabled.
  - **Per Hop**: The user will set the hop stop type in the navFinder plugin. Different stop types can be set per different hops.
Figure 168: Animation, Basic (Flyover), Navigator editor

- **Flyover Path Profile (Stop Type is set to Flyover):** Defines flying curve profile (curvature) of animation path.
- **Lag On Point:** Similar to "Flyover Path Profile" button, but defines timing profile of the flyover animation.
- **Flyover Minimal Height:** Sets the minimum flyover height in centimeters.
- **Stop At First Hop:** Defines whether a stop point will be added to the first hop (the beginning of the animation). The parameter is enabled only when using Stop Points or Pause Points as the Stop Type value.
- **Pan & Tilt Animation:** Enables or disables the pan and tilt values of the camera of each hop in the animation. When enabled (On) this setting will enable the Pan and Tilt values for the NavFinder plug-in.
- **Progress Profile:** Defines timing profile between stop points of animation. Smooth option causes the animation to ease in and out of hop points.

Figure 169: Animation, Advanced, Navigator editor
The Advanced tab:

- **Preferred Flight Height**: Defines the camera height that will be used in the animation between the hops.
- **Preferred Flight Style**: Defines the camera movement between the hops.
  - **Zoom**: Enables linear movement from hop point to the high point and back into the next hop point.
  - **Auto**: Calculates the movement according to distance, height, and so on.
  - **Flyover**: Enables a smooth movement from one hop to another.
- **Preferred Landing**: Defines the animation behavior when approaching the hop points.
  - **Helicopter**: Uses a steeper approach to the hop point.
  - **Auto**: Calculates the approach according to distance, height, and so on.
  - **Airplane**: Uses a flatter approach to the hop point.

**Note**: The drifting options allow camera pan and tilt drifting during the animation. This option is used to give the animation movement a kind of satiate feeling.

- **Drifting Pan Time (Frames)**: Defines the time to complete a full turn of the pan.
- **Drifting Tilt Time (Frames)**: Defines the time to complete a full turn of the tilt.
- **Drift Phase Shift (%)**: Defines the offset between the pan movement and the tilt movement.
- **Stop Drifting**: Defines if the drifting should stop at the start point or during stop points. If Never is selected drifting will not stop.
- **Flight Direction**: force the direction of the flight. Default is the shortest route to the next hop. If East or West is selected, flight route will be set according to the selected option.

**Miscellaneous**

**Figure 170**: Miscellaneous (Interactive), Navigator editor

![Figure 170: Miscellaneous (Interactive), Navigator editor](image)

The Miscellaneous button displays the editor view for setting interactivity and label related parameters.
• **Interactive Mode**: Defines the interactive behavior of Viz. Available modes are None, Editor, On–Air, Always Fly To and On “i”.
  - **None**: Disables interactive mode.
  - **Editor**: Enables interactive mode during scene editing.
  - **On–Air**: Enables interactive mode when Viz Engine is in On Air mode.
  - **Always**: Enables interactive mode during scene editing and when Viz Engine is in On Air mode.
  - **Fly To**: Defines destination properties. Available Fly To options in Interactive mode are Country, Region, Sub Region and Home. **Country** makes the camera animate to the country in which the mouse was clicked. Animation will stop when the camera reaches a distance from the country as defined by the Extra Zoom Country parameter. **Region** makes the camera animate to the region in which the mouse was clicked. Animation will stop when the camera reaches a distance from the region as defined by the Extra Zoom Region parameter. **Sub Region** makes the camera animate to the sub region in which the mouse was clicked. Animation will stop when the camera reaches a distance from the sub region as defined by the Extra Zoom Sub Region parameter. **Home** makes the camera animate to the position defined by the Home Lan, Home Lat and Home Distance parameters.
  - **On “i”**: Enables interactive mode during scene editing and when Viz Engine is in On Air mode, when pressing the “i” key while using the mouse to navigate.

• **Interactive Anim**: When enabled (On), user activated animation from the current map position to the current selected hop is enabled. This animation is triggered by the user in the NavFinder plug-in, by pressing the Fly To Map button. The Fly To option will enable the user to select a point on the map, by clicking the mouse, and the animation will run from the current camera position to the selected point.

• **Extra Zoom Country**: Defines the extra zoom value added to the camera animation when animation destination is a country. The camera will zoom in to the selected country until the bounding box of the country will fill the render window. The extra zoom will define an additional zoom value to the final camera position calculations.

• **Extra Zoom Region**: Defines the extra zoom value added to the camera animation when animation destination is a region. The camera will zoom in to the selected region until the bounding box of the region will fill the render window. The extra zoom will define an additional zoom value to the final camera position calculations.

• **Extra Zoom Sub Region**: Defines the extra zoom value added to the camera animation when animation destination is a sub region. The camera will zoom in to the selected region until the bounding box of the sub region will fill the render window. The extra zoom will define an additional zoom value to the final camera position calculations.

• **Home Lon**: Defines a longitude value for a home point.

• **Home Lat**: Defines a latitude value for a home point.

• **Home Distance**: this parameter defines a distance from a home point.
Chapter 11: Maps Plug-ins

Figure 171: Miscellaneous (Labels), Navigator editor

- **Labels**: Defines the label behavior. The Labels setting will override all labels (in all levels of the hierarchy) under the navigator container.
- **Overlay**: Places labels on a plane in front of the map (see Label It for description). When this mode is selected an additional parameter will enabled, Label Camera, which defines the camera to be used for the labels.
- **On Map**: Places labels on the map.

**Advanced**

Figure 172: Advanced, Navigator editor

The **Advanced** button displays additional animation parameters.
- **Helicopter Lift Duration**: Sets the time, in seconds, for the helicopter to go out from a hop point to the high point in the middle.
• **Helicopter Smooth Level**: Sets the animation smoothness between one hop to another. This parameter will affect the animation path when a helicopter flight is simulated.

• **Airplane Smooth Level**: Sets the animation smoothness between one hop to another. This parameter will affect the animation path when a Airplane flight is simulated.

• **Tilt Smoothing**: This parameter is enabled when the Pan & Tilt parameter in the animation tab is enabled. When set to On, an additional parameter, Tilt Smoothing Rate, is enabled. Set the required smoothing value for the tilt animation.

• **Height Mode**: Defines how the camera distance from the map during the animation and at the hop points will be calculated:
  - **Regular**: Sets the height that is calculated by the Navigator plug-in based on the hop locations and distance from map as set by the user.
  - **Fixed**: Sets a fixed height for the camera while animating between the hops and at the hop point. When set to fixed, User selected distance at the hop point is ignored.
  - **Minimal**: Sets the minimal height to which the camera will descend at the hop points and during the animation. If the calculated distance is larger than the minimal value, the camera will use the calculated distance.
  - **Min Height**: Sets the minimal height value.

• **Update Stage in OnAir**: Defines if the stage will jump to the hop position when updating a map in OnAir mode.

**Common Buttons**

• **Calculate Animation**: Re-builds the animation between the hops using the parameters defined in the plug-in.

• **Center Map**: Aligns the center of the map with the center of the screen.

• **Refresh All Maps**: The Navigator plugin will search its sub-tree for containers with CWMClient and NavFinder and refresh the CWMClients maps.

**Known issue(s)**

• Rotation, scaling and translation above the Navigator container might affect the plug-in behavior. Do not apply any rotations above the container in the hierarchy and use only the pan/tilt parameters of the plug-in to control the orientation of the camera.

### 11.43 NavScale

The plug-in can be found in the following folders:

• Viz Artist 2: Function -> Container (button) -> Maps.
• Viz Artist 3: Built Ins -> Container Plugins -> Maps.
The NavScale plug-in maintains the scale of an object, related to the screen, during the Navigator animation. The plug-in is placed on a child container under the Navigator plug-in, and it will maintain the its defined scaling throughout the animation.

This section contains information on the following topics:

11.43.1 Plug-in Description

**Figure 173: NavScale editor**

- **Scale On Distance Factor**: Sets the value of the Scale On Distance Factor parameter to the required number by modifying the scale factor and checking the result in the renderer.

  **Note**: This factor does not use any measurement units, but it calculates the object’s scaling using a number of parameters from the Navigator plug-in.

---

11.44 NavSlave

The plug-in can be found in the following folders:


The NavSlave plug-in creates a relation between its container and a Navigator plug-in container in the scene. This plug-in will lock the NavSlave container to the longitude and latitude values of the Navigator plug-in. The plug-in will search the hierarchy above it for the navigator container.

This section contains information on the following topics:

- 11.44.1 Plug-in Description
11.44.1 Plug-in Description

Figure 174: NavSlave editor

- **Altitude**: Defines the altitude of the object in relation to the Navigator container.
- **Tangent To Globe**: When enabled (On) sets the object to move over the globe surface.

11.45 Publish To Design

The plug-in can be found in the following folders:

Enables updated parameters to be set directly to the design they came from (either container hierarchy or object pool) by pressing Publish To Design or create a new design out of modified data by assigning a new name under the New Design tab.

This section contains information on the following topics:
- Plug-in Description

11.45.1 Plug-in Description

Figure 175: New Design, Publish To Design editor
• **Publishing Target**: Publish using the original design or create a new design.
• **Design Name**: Sets the new name for the new design or select a design from the Designs list.
• **Publish And Refresh**: Sends the label back to where it came from and refreshes the scene.

### 11.46 Pyramid Control

The plug-in can be found in the following folders:
- Viz Artist 2: Object -> Built in.

The purpose of the Pyramid Control geometry plug-in is to sort overlapped layers of the pyramids in the scene such that tiles with higher resolution will not be hidden by tiles with lower resolution.

*Note: Plug-in must be located somewhere in the hierarchy of the MapTiler plug-in.***

This section contains information on the following topics:
- **11.46.1 Plug-in Description**

#### 11.46.1 Plug-in Description

*Figure 176: Enabled, Pyramid Control editor*

- **Color Correction**: Defines if and how the color correction will be applied to pyramid layers.
  - Disabled – No color correction is applied.
  - Simple – An automatic color correction will be applied to pyramid layers.
  - Advanced – Color correction will be applied according to user selection
- **Histogram Key Out Mode**: To apply a proper color correction, the histograms of the tiles should be calculated and the sea areas should be keyed out.
(removed) from the calculation. This parameter defines the method to key out the sea areas during color correction calculations:

- None – Nothing is keyed out
- Color – The keying is based on the key color selected in the Sea Color control, Key Color Threshold and Key Color Attack parameters.
- Alpha – The keying is based on the alpha channel in the map image
- Color and Alpha – both of the previous criteria are used during key calculations.

**Note:** The sea area defined in the Histogram Key Out Mode is not removed from the map image during rendering. It is only removed for color correction calculations.

- **Render Key Out Mode:** This parameter defines the method to key out the sea areas from rendering. Modes are the same as in Histogram Key Out Mode.
- **Sea Color:** Sets the color of the sea used for keying and color correction calculations.

**Note:** The alpha value in this case has no effect (it is only a standard property of the color component).

- **Key Color Threshold:** The range of colors around the selected Sea Color that will be keyed out. threshold of the keying. The color values in the range [Color_value – Threshold_value, Color_value + Threshold_value] will be keyed out
- **Key Color Attack:** This parameter defines the blending range of the key edges. The higher the Attack value is, the softer the key edge will be.
- **Refresh All Pyramids:** Apply the new settings to all pyramid layers.

### 11.47 Screen Scale

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Container (button) -> Maps-Obs.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps-Obs.

**CAUTION!** The ScreenScale plug-in is no longer supported (discontinued) and should not be used. The plug-in is installed for compatibility reasons only. The NavScale plug-in should be used instead of the ScreenScale plug-in.

The ScreenScale plug-in is used in order to keep an object in the same size regardless of the camera movement.

This section contains information on the following topics:
- **11.47.1 Plug-in Description**
11.47.1 Plug-in Description

Figure 177: Screen Lock (Off), Screen Scale editor

- **Screen Lock**: Defines the way the screen and the ScreenScale object interact:
  - **Off**: Scales the object holding the ScreenScale plug-in normally with camera movement. When enabled (On) the Camera parameter is made available.
  - **Camera**: Defines the camera for which the object will keep its scale when the camera is moved.

Figure 178: Screen Lock (Size Lock), Screen Scale editor

- **Size Lock**: Locks the object scaling, and sets the Scale Factor to resize the object while keeping the scale fixed.
  - **Scale Factor**: Sets the scale factor.

Figure 179: Screen Lock (Pixel Lock), Screen Scale editor

- **Pixel Lock**: Locks the object according to the defined number of pixels by the Lock Size (px) parameter, by Width or by Height.
  - **Lock Size (px)**: Sets the number of pixels for the Pixel Lock.

---

**CAUTION!** The ScreenScale plug-in is no longer supported (discontinued) and should not be used. The plug-in is installed for compatibility reasons only. The NavScale plug-in should be used instead of the ScreenScale plug-in.
11.48 Shadow Agent

The plug-in can be found in the following folders:
- Viz Artist 2: Object -> Built in.

Shadow Agent is an agent for the Shadows parameters covered by the scene plug-in Label Manager.

This section contains information on the following topics:
- 11.48.1 Plug-in Description

11.48.1 Plug-in Description

![Figure 180: ShadowAgent UI](image)

Render With Camera – this parameter defines for which camera shadows will apply:
- All – shadows will be rendered on all cameras (Compatible with previous versions).
- Label – shadows are rendered only for the defined off screen labels camera.
- Map – shadows are rendered only for the defined map camera.
- Shadow – shadows are rendered only for the defined shadows camera, as defined in the 3DLLabelsManager plug-in (Shadows tab).

11.49 Trace It

The plug-in can be found in the following folders:
- Viz Artist 2: Function -> Maps.
- Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The TraceIt plug-in is used to place the 3D object it is attached too over a line, created with the 3D Line plug-in, and follows the line’s end point. The object will
follow the line animation as the object with the TraceIt plug-in move with the 3D Line end point.

This section contains information on the following topics:
• 11.49.1 Plug-in Description

11.49.1 Plug-in Description

The TraceIt plug-in has three options; General, Camera and Advanced.

This section contains information on the following topics:
• General
• Camera
• Advanced

General

Figure 181: General tab, Trace It editor

- **Progress**: Indicates the animation position of the 3D Line object. This field is disabled and cannot be modified.
- **Height**: Defines the 3D object’s height in relation to the 3D Line object.
- **Smooth Direction (%)**: Defines the object’s motion behavior when changing direction. When set to a low value the direction will change faster.
- **Quality**: Tells the plug-in which resolution to track when tracing a border that by default has 3 levels of detail (LOD). Available options are High, Medium and Low.
- **3DLine**: Defines the 3D Line container that the Trace It plug-in will follow.
  - **Previous**: Follows the animation of the 3D Line plug-in in the previous container.
  - **Above**: Follows the animation of the 3D Line plug-in in the above container.
  - **Container**: Follows the animation of the 3D Line plug-in in the container dragged to its container place holder.
- **Progress Control**: Defines how the object’s progress will be controlled:
  - **None**: The progress id manually created by the user (stage animation).
  - **Navigator**: Follows the animation of the Navigator plug-in.
  - **Slave**: Slave to the 3Dline plugin which is the source of the trace.
  - **Master**: control the 3D line plugin progress which is the source of the trace.
Camera

**Figure 182: General tab, Trace It editor**

The Camera tab defines the mode for camera tracing.

- **Progress**: Indicates the animation position of the 3D Line object. This field is disabled and cannot be modified.

- **Trace Camera**: Manually driven (standalone) or control a navigator's animation between a specified hop and the corresponding one. Available options are Off, Navigator, Standalone, General and Locks.

- **Off**: No camera tracing.

- **Navigator**: trace the camera animation between the selected hop and the following hop.

- **General**: the general tab defines the tracing parameters:
  - **Smooth Camera Position (%)**: Smooth camera position path
  - **Smooth Camera Direction (%)**: Smooth camera direction path
  - **Start Hop**: Select a hop in the Navigator animation. The camera trace will be inserted between the selected hop and the next one.
  - **Update Hop Data**: updates data in NavFinder plug-ins where the camera trace is inserted (actually sets start and end values of the tracing route to insert camera trace smoothly to the navigator animation).

- **Locks**: the locks tab enables the user to lock camera animation parameters:
  - **Lock Pan**: when set ON, the camera pan will follow the path direction. When set Off, pan animation will be use the navigator parameters.
  - **Pan Offset**: Set the pan offset to path directions.
  - **Lock Tilt**: when set ON, the camera tilt will follow the path direction. When set Off, tilt animation will be use the navigator parameters.
  - **Tilt Offset**: Set the tilt offset to path directions
  - **Lock Distance**: when set ON, the camera distance from the map during the animation will be use the Distance parameter value. When set Off, the distance during the animation will use the navigator parameters.
• **Distance**: Set the distance to use during the animation.
• **Standalone**: trace the camera animation between the selected hop and the following hop.
• **General**: the general tab defines the tracing parameters:
  • **Smooth Camera Position (%)**: Smooth camera position path
  • **Smooth Camera Direction (%)**: Smooth camera direction path
• **Locks**: the locks tab enables the user to lock camera animation parameters:
  • **Lock Pan**: when set ON, the camera pan will follow the path direction. When set Off, pan animation will use the navigator parameters.
  • **Pan Offset**: Set the pan offset to path directions.
  • **Lock Tilt**: when set ON, the camera tilt will follow the path direction. When set Off, tilt animation will use the navigator parameters.
  • **Tilt Offset**: Set the tilt offset to path directions
  • **Lock Distance**: when set ON, the camera distance from the map during the animation will be use the Distance parameter value. When set Off, the distance during the animation will use the navigator parameters.
  • **Distance**: Set the distance to use during the animation.

**Advanced**

**Figure 183**: Advanced, Trace It editor

- **Segmentation**: When tracking, a line can be split into different segments (for example a region might have several islands) the segmentation option tells the Trace It plug-in what segment to track. Available options are Auto, Largest, Sectioned and All.
- **Overlay**: Transfers the object from a position on the actual map to a position in a different camera (similar to the Label It plug-in’s Overlay options).

### 11.50 World Image Refresh

The plug-in can be found in the following folders:

- Viz Artist 2: Function -> Container (button) -> Weather.
- Viz Artist 3: Built Ins -> Container Plugins -> Weather.

The WImageRefresh plug-in is placed on a map container and when the map is changed the WImageRefresh plug-in will refresh objects residing under the map container. This action will cause all the geographically referenced objects, under
the map container, to recalculate their position and move to the correct position according to the new map.

This section contains information on the following topics:
  • 11.50.1 Plug-in Description

11.50.1 Plug-in Description

The World Image Refresh plug-in has no parameters.

11.51 World Position

The plug-in can be found in the following folders:
  • Viz Artist 2: Function -> Container (button) -> Maps.
  • Viz Artist 3: Built Ins -> Container Plugins -> Maps.

The WPosition plug-in is used to place an object over a geographically referenced map by setting the Longitude, Latitude and Altitude parameters. When the object is moved over the map, the current values of Longitude, Latitude and Altitude will be updated in the WPosition plug-in. The object with the WPosition plug-in must be placed under a map in the hierarchy.

This section contains information on the following topics:
  • 11.51.1 Plug-in Description
11.5.1 Plug-in Description

Figure 184: World Position editor

- **Longitude**: Sets the parameter to the requested Longitude. The object will move over the map to the requested location. Another option is to move the object and read its Longitude value from this field.

- **Latitude**: Sets the parameter to the requested Latitude. The object will move over the map to the requested location. Another option is to move the object and read its Latitude value from this field.

- **Altitude**: Sets the parameter to the requested Altitude. The object will move over the map to the requested location. Another option is to move the object and read its Altitude value from this field.

- **Tangent To Globe**: When enabled (On), this parameter will always keep the object parallel to the globe surface. The parameter is enabled when the WPosition plug-in is placed in a child container of a container with a Globe plug-in.

- **Update Long/Lat From Position**: Gets the current container location and updates the Longitude, Latitude and Altitude parameters:
  - **Auto**: Updates the Longitude and Latitude values when a new position is dragged over the container and never again.
  - **Never**: Never updates the object’s position, only Longitude and Latitude values are updated.
  - **Always**: Always check the object’s position and update WPosition when it changes.

- **Follow Terrain** – The height (Altitude) will be read from the terrain in case of a terrain geometry.

- **Longitude Offset**: Positions the object at a given offset from the actual Longitude.

- **Latitude Offset**: Positions the object at a given offset from the actual Latitude.

- **Move to Map Center**: When clicked, the object will move to the center of the parent map.

- **Update Lat/Long From Container Position**: When clicked, the Latitude and Longitude position parameters will be updated.
12 Geographically Referenced Maps

Figure 185: Geo Maps, Viz Artist 3.x.

CWM Client plug-in produces geographical maps (geo maps). Geo maps are images of maps that are geographically referenced (that is the image contains information about its longitude and latitude).

Figure 186: Geo Maps icon, Viz Artist 2.x.

Geo maps are identified by a little globe icon next to the image icon. Containers that will be placed under the GeoMap container and using geographic data referencing will be placed relatively on the GeoMap.

Note: Do not modify the image properties.

Do not scale, rotate or change the position of the image in the image editor. Changing any of these parameters will result in loss of the image’s geographical reference.

All modifications should be done in the container properties editor.

The geo map can be placed on any Geometry Object; however, the geographical referencing will not be correct when placed on 3D objects other than Globe. It is recommended, for best geographical referencing results, to use GeoImage, Globe or terrain objects.
13 Frequently Asked Questions

This section contains some of the frequently asked questions concerning the use of Viz World Client and Server.

- I can connect Client A to the map server, client B is able to ping the map server, but Client B still has no connection to the map server. What is wrong?
  - Sometimes, a machine is not accessible to all other computers in the network by its hostname.
  - For example, if there are two clients, Client A & Client B, and the Viz World Server and the Server Allocator running on the MapServer machine, Client A might resolve MapServer to the IP 192.168.1.100, but Client B might not resolve it to the same IP, or might not resolve it at all because ClientB is on another subnet or for any other given reason.
  - Both clients can access the MapServer if it was defined as 192.168.1.100 or MapServer.company.domain.
  - A frequent problem is therefore that users might write in Client B’s Viz Config the IP 192.168.1.100, and in Client A’s Viz Config MapServer (because that is the address each can resolve); however, this will result in that the Server Allocator will return to both clients the same hostname that was specified in the MapServer.ini file (which is MapServer) and therefore only accessible to ClientA.
  - In other words, in the field of ControlledMapServer, the hostname/IP that is specified has to be known to all clients and the Server Allocator machine.
  - See also Configuring Viz Engine and Server Launcher.

- I have problems loading my map scenes in Viz Trio?
  - Map scenes often use a large amount of texture memory; hence, this will take time to load and might cause Viz Trio’s local preview channel to time out.
  - In Viz Trio it is possible to adjust the Viz Engine Connection Timeout for the local preview channel.
  - Click the Config button, and under the Miscellaneous section select Local Viz Renderer, and set the Viz Engine Connection Timeout parameter.

Note: There is no such setting for the Viz Content Pilot (VCP) client as the VCP client itself does host the Viz process for local preview.