
Viz Arc User Guide
Version 3.0

Copyright ©2026 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed,
stored in a retrieval system, translated into any language, computer language, or transmitted
in any form or by any means, electronically, mechanically, magnetically, optically,
chemically, photocopied, manually, or otherwise, without prior written permission from
Vizrt. Vizrt specifically retains title to all Vizrt software. This software is supplied under a license
agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication “as is” without warranty of any kind, either expressed or implied. This publication
may contain technical inaccuracies or typographical errors. While every precaution has been taken in the
preparation of this document to ensure that it contains accurate and up-to-date information, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained in this document.

Vizrt’s policy is one of continual development, so the content of this document is periodically subject to be modified
without notice. These changes will be incorporated in new editions of the publication. Vizrt may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.
Vizrt may have patents or pending patent applications covering subject matters in this document. The furnishing of
this document does not give you any license to these patents.

Antivirus Considerations

Vizrt advises customers to use an AV solution that allows for custom exclusions and granular performance tuning to
prevent unnecessary interference with our products. If interference is encountered:

 Real-Time Scanning: Keep it enabled, but exclude any performance-sensitive operations involving Vizrt-
specific folders, files, and processes. For example:

 C:\Program Files\[Product Name]
 C:\ProgramData\[Product Name]
 Any custom directory where [Product Name] stores data, and any specific process related to [Product

Name].

 Risk Acknowledgment: Excluding certain folders/processes may improve performance, but also create an
attack vector.

 Scan Scheduling: Run full system scans during off-peak hours.
 False Positives: If behavior-based detection flags a false positive, mark that executable as a trusted

application.

Technical Support

For technical support and the latest news of upgrades, documentation, and related products,
visit the Vizrt web site at www.vizrt.com.

Created on

2026/01/29

http://www.vizrt.com

Viz Arc User Guide - Version 3.0

3

Contents
1 Introduction...10

1.1 Related Documents ...10

1.2 Feedback and Suggestions ...11

2 New in Viz Arc...12

3 Getting Started ..14

3.1 System Overview ...15

3.1.1 Ports..15

3.2 System Requirements ...18

3.2.1 Minimum Software Requirements ..18

3.2.2 Minimum Hardware Requirements ...18

3.2.3 Antivirus ..19

4 Installation...20

4.1 Installing Viz Arc ...21

4.2 WIBU-based Licensing System..23

4.2.1 Important Pre-installation Information ..23

4.3 Launching Viz Arc...24

4.3.1 Command Line Arguments ..25

4.4 License..26

4.4.1 Viz Arc Core ...26

4.4.2 Viz Arc Freemium..26

4.4.3 Viz Arc AI..26

4.4.4 Viz Arc REST ..26

4.4.5 License Locations ...27

4.4.6 License Configuration ..28

4.5 Files and Folders ..31

4.6 Unreal Plug-in ..33

4.7 Engine Service..35

4.7.1 Prerequisites...35

4.7.2 Installation..35

4.7.3 Manual Installation ..37

4.7.4 Starting Engine Service ..37

4.7.5 Configuration..38

4.7.6 Troubleshooting...39

Viz Arc User Guide - Version 3.0

4

4.8 Configuring Graphic Hub...41

4.8.1 Configuring Graphic Hub for the Viz Arc Template Workflow ..41

4.8.2 Import an Archive Containing Add-ons ...41

4.8.3 Manually Creating Add-ons..42

4.9 Script Debugging ...49

4.9.1 How to Enable Viz Arc Script Debugger on Windows 7/8/8.1/10 ...49

5 Configuration...51

5.1 General Configuration ...52

5.2 General Settings...53

5.2.1 System ..53

5.2.2 Communication..53

5.2.3 General..54

5.2.4 Playlist...55

5.2.5 Scripting..55

5.2.6 Project Folder ...55

5.2.7 Unreal Engine ...55

5.2.8 AI/LLM Configuration ...56

5.2.9 Map..56

5.2.10 Toast Notifications ...56

5.2.11 Performance ...57

5.2.12 User Interface Appearance ..57

5.2.13 Default Color Setting..59

5.2.14 Configuring Viz Engine ...61

5.3 Profiles..63

5.3.1 Profile Configuration..65

5.3.2 Engine Configuration ...66

5.3.3 Channel Configuration...68

5.4 Keyboard Shortcuts ...74

5.4.1 Keyboard Shortcuts ...74

5.4.2 To Manage Shortcuts ...77

5.4.3 To Add Custom Action Shortcuts...77

5.5 Video Settings ..80

5.5.1 Preview Output...80

5.6 GPI Setup..87

5.6.1 GPI ...87

5.6.2 Triggers ...87

5.7 Timecode Setup...89

Viz Arc User Guide - Version 3.0

5

5.7.1 Time Code...89

5.8 Clip Setup ...90

5.8.1 Coder Preset ...90

5.8.2 Viz Recorder Preset ..92

5.9 Info..96

5.10 AI MCP Server ...98

5.10.1 MCP Server Integration ..98

5.10.2 Available AI Tools ...101

5.10.3 Troubleshooting...103

5.11 Tracking..105

5.11.1 Tracking ..106

5.11.2 General..106

5.11.3 SMURF Input ...106

5.11.4 Tracking Hub ..106

5.11.5 Performance ...107

5.11.6 Appearance...107

5.11.7 Graphics ..107

5.12 Vizrt Systems..109

5.12.1 Graphic Hub REST ..109

5.12.2 Media Service..110

5.12.3 Viz One ..111

5.12.4 Viz Virtual Studio ..111

5.12.5 TCP Command Port..113

5.12.6 Director ...113

5.13 Third Party Systems...119

5.13.1 Vinten Automation Server..120

5.13.2 Tecnopoint Automation Server ...120

5.13.3 Telemetrics Automation Server...120

5.13.4 Utah Scientific Router ..121

5.13.5 Monogram...121

5.13.6 MIDI Device ...123

5.13.7 Stream Deck ...124

5.13.8 Art-Net DMX ..124

5.14 Loupedeck Integration ..125

5.14.1 Installation..125

5.15 Stream Deck Integration ...130

5.15.1 Installation..131

Viz Arc User Guide - Version 3.0

6

5.15.2 Configuration..132

5.15.3 Internal vs. External Stream Deck Control ..135

5.15.4 Usage ..135

5.16 Preview Studio Configuration ...136

5.16.1 Overview ...136

5.16.2 Configuration..137

5.17 Companion Integration ...139

5.17.1 Installation..139

6 Working with Viz Arc ..142

6.1 General Workflow ..143

6.2 User Interface...145

6.2.1 Builder Mode ..145

6.2.2 On Air Mode ..149

6.2.3 Top Tool Bar ...149

6.2.4 Status Bar ...150

6.2.5 Main Menu and Project Toolbar...152

6.2.6 Operations Toolbar ..159

6.2.7 Scenes Toolbar ...160

6.2.8 Import ...161

6.2.9 Export..167

6.2.10 Builder Mode Panel ..170

6.3 4 Point Calibration ...177

6.3.1 About 4 Point Calibration...177

6.3.2 Prerequisites...177

6.3.3 To Add Calibration Points ..178

6.3.4 Calibration ..179

6.3.5 Applying Calibration...180

6.4 Supported Action Types ..183

6.4.1 Project Action Types ..184

6.4.2 Scene Action Types ..214

6.4.3 Other Action Types ...247

6.5 Builder Mode ..266

6.5.1 Actions View..267

6.5.2 Set View...288

6.5.3 Script View ..304

6.5.4 Scenes Panel...405

6.6 APIs ...416

Viz Arc User Guide - Version 3.0

7

6.6.1 Viz Arc In-App Web API ...417

6.6.2 REST API..437

6.7 Data Integration...445

6.7.1 Singal-R...445

6.7.2 MQTT Broker...446

6.7.3 TCP Server ..448

6.7.4 UDP Server..449

6.7.5 DataMap Linking...449

6.7.6 DataMap Websocket...454

6.7.7 Excel and CSV Integration..455

6.8 Integrations..460

6.8.1 Art-Net DMX Integration...461

6.8.2 Loupedeck ..474

6.8.3 MOS Integration ...487

6.8.4 Stream Deck ...492

6.8.5 Companion ...503

6.8.6 Viz Arena ...511

6.8.7 Working with Unreal Engine ..524

6.8.8 Timecode from Plura or NDI ..565

6.9 Engine Status Widget...570

6.9.1 To Add an Engine Status Widget..570

6.10 Graphic Hub Browser...572

6.10.1 Main Features ...573

6.11 Import and Export..580

6.11.1 Import Actions ..580

6.11.2 Export Actions ..580

6.12 Multizone Chroma Keying ...581

6.12.1 Configuring the Multizone Chroma Keyer...581

6.12.2 Working with Polygons and the Map...591

6.12.3 Multizone Chroma Key Action in Detail ...594

6.13 OCR ...597

6.13.1 To Add an OCR Widget ...597

6.14 On Air Mode ..612

6.14.1 To Go On Air ..612

6.14.2 On Air Mode Desktop Shortcut and Command Line Switches...613

6.14.3 Builder-only Tabs ...613

6.15 Playlist ..614

Viz Arc User Guide - Version 3.0

8

6.15.1 Adding Actions to the Playlist ..614

6.15.2 Working with the Playlist ...614

6.15.3 Using the Playlist ..617

6.16 Preview Studio ...619

6.16.1 Recording..619

6.16.2 Playback..620

6.16.3 Limitations..622

6.17 Preview...623

6.18 Precision Keyer ..625

6.18.1 Simple ...625

6.18.2 Advanced ..626

6.18.3 Color Correction ...626

6.18.4 Picking ..627

6.18.5 Settings ...629

6.18.6 Presets ..629

6.18.7 Execution ..630

6.18.8 Web View...630

6.19 Program and Preview ..633

6.19.1 Previewing by Keyboard Shortcut...633

6.19.2 Previewing by CTRL Modifier ...633

6.19.3 Templates ...634

6.20 Projects...635

6.21 Templates ..636

6.21.1 Creating a New Template ..636

6.21.2 Using a Template..653

6.21.3 Adding Templates to a Master Scene ..659

6.21.4 Using Templates on a Scene Containing Multiple Top Level Control Objects ..664

6.21.5 Unreal Templates ...667

6.21.6 Flowics ..672

6.21.7 DataMap Explorer...688

7 Troubleshooting ..694

7.1 Vizrt Issues..694

7.1.1 Unable to Load Scene ..694

7.1.2 Graphic Hub Not Connected..695

7.1.3 Preview Not Connected ...696

7.1.4 Output Initialize Failed...696

7.1.5 Cannot Connect/Send to Viz Engine ...697

Viz Arc User Guide - Version 3.0

9

7.1.6 Cannot Send Shared Memory Commands..697

7.2 Unreal Engine...698

7.2.1 Unreal Engine not Available...698

7.2.2 Cannot Connect/Send to Unreal Engine ...698

7.2.3 Unable to Load Unreal Level..699

7.3 NDI ..700

7.4 Support...700

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 10

1 Introduction

Viz Arc integrates to Viz Engine and scenes allowing you to design your virtual studios and augmented reality
elements in Viz Artist, eliminating the need for creating custom applications to control virtual studios and
augmented reality elements for each production.

 A simple user interface allows you to create projects for each production.
 Easily configure action buttons that control any property, element or animation in a Vizrt Scene without any

programming or expert skills. Operators can access a panel of actions that can be triggered at any time.
 Arc is an out-of-the-box solution that eliminates the need to create custom controllers for operating AR/VR

elements and non-scripted shows.
 Viz Arc lets you easily configure the logic of each individual element and operate virtual studios and

augmented reality or graphic elements on a non-scripted live production, while reducing the setup time and
expertise required.

1.1 Related Documents
 Viz Artist User Guide: Contains information on how to install Viz Engine and create graphics scenes in Viz

Artist.
 Viz Engine Administrator Guide: Contains information on how to install and configure Viz Artist and Engine,

and supported hardware.
 Viz Graphic Hub Administrator Guide: Contains information needed to configure and operate Graphic Hub.

http://documentation.vizrt.com/viz-artist
http://documentation.vizrt.com/viz-engine
http://documentation.vizrt.com/graphic-hub

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 11

 Viz Tracking Hub Administrator Guide: Contains information required to understand Tracking Hub and Studio
Manager, two important software components in the Viz Virtual Studio solution.

 Viz Pilot User Guide: Contains information needed to operate Viz Pilot and use the Newsroom Component to
create newsroom data elements for a newsroom system playlist.

1.2 Feedback and Suggestions
We encourage feedback on our products and documentation. Please contact your local Vizrt customer support
team at www.vizrt.com.

http://documentation.vizrt.com/tracking-hub
http://documentation.vizrt.com/viz-pilot
http://www.vizrt.com/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 12

2 New in Viz Arc

AI-Aided Template Development
 Internal AI Prompt: Built-in assistant in the template and global script editors.

Generate templates from descriptions, modify scripts, add/remove parameters,
and arrange UI layouts using natural language.

 MCP Server Integration: Connect external AI tools to Viz Arc via the Model
Context Protocol. A lightweight server (VizArc.McpServer.exe) exposes template
data, parameters, and scripting documentation to compatible AI assistants.

Web View
Viz Arc’s web view adds direct visualization and control of templates,
allowing users to remotely connect to Viz Arc and operate templates
and actions from a web browser.

New Project View
Store projects hierarchically in Graphic Hub folders.

An always-visible project panel provides quick switching, customizable
sorting, and context menu actions for renaming, deleting, and
organizing your shows.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 13

Script Editor
The script editor has been completely overhauled with professional IDE-
like features:

 Better Performance: Optimized rendering and syntax parsing for faster editing,
especially with large scripts.

 Enhanced Syntax Highlighting: New VSCode-style highlighting for JavaScript
and VBScript with improved keyword, string, and comment coloring.

 Bracket Highlighting: Matching brackets are automatically highlighted when
the cursor is positioned next to them.

 Rainbow Bracket Coloring: Nested brackets are color-coded by depth level,
making it easier to identify matching pairs in complex expressions.

 Code Folding: Collapse and expand functions, loops, and code blocks to
navigate large scripts more easily.

 Autocompletion: Context-aware suggestions for Viz Arc functions, parameters,
and JavaScript keywords as you type.

 Function Navigation: Jump directly to function definitions (CTRL + click).
 Navigation History: Back/forward navigation to quickly return to previous

editing positions.

Pilot Data Server Integration
The MSE Action now supports triggering (take, continue, take out) of
Pilot Data Elements present on the PDS.

DataMap Explorer
The DataMap Explorer lets you browse and inspect all DataMap
variables in real-time, automatically detecting whether content is JSON,
XML, or plain text. You can view data as an expandable tree or
formatted text, and test JSONPath or XPath queries with instant results.
Double-clicking any tree node generates the query path automatically,
and the "Apply to Parameter" button links your selected variable and
query directly to a template parameter. Query history, text search, and
clipboard support round out the tool for efficient data debugging and
parameter binding.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 14

3 Getting Started
This section describes the location of the installation files, starting and shutting down Viz Arc, and logging on to a
Graphic Hub.

This section covers the following topics:

 System Overview
 System Requirements

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 15

3.1 System Overview

Viz Arc is a control application that can be used for one or more Viz Engines. Viz Arc uses Graphic Hub and its REST
API for browsing Scenes, Images, merged Geometries and Materials.

When working with tracked cameras in a Virtual Studio environment, Viz Arc communicates with Tracking Hub to
send and receive camera tracking information. One of the key features of Viz Arc is the ability to set up Augmented
Reality elements in outdoor productions directly over a map. A working internet connection is required to retrieve
map imagery from providers such as Bing or OSM.

3.1.1 Ports

Application Port Protocol

Viz Arc Web Service Default port: 5004

Default port: 5005

HTTP
HTTPS

Viz Arc REST Service

(standalone service)

Default port: 9004

Default port: 9005

HTTP
HTTPS

Viz Arc MQTT Broker Default port: 1883 TCP

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 16

Application Port Protocol

Vic Arc TCP Server Default port: 9204 TCP

Viz Arc Template Script
Viz Arc Main Script

Debugging port: 9222

Debugging port: 9223

TCP
TCP

Viz Engine Default ports: 6100 , 6800

Feedback port: 7476

TCP
UDP

Viz Arc Feedback Feedback port: 12050 UDP

Graphic Hub REST REST API port: 19398 HTTP

Tracking Hub Requests data through port: 20000

Receives data through port: 4000

TCP
UDP

Media Sequencer REST API port: 8580 HTTP

Media Service for v4.1.0 and higher: 25506

for v2.3.3 and lower: 21099

HTTP

Pilot Data Server REST API port: 8177 HTTP

Coder Coder port: 8081 HTTP

Unreal Engine arcCom port: 5647 TCP

Engine Service VizArcEngineService port: 5644 TCP

Unreal Web Interface Default port: 30010 HTTP

Unreal Web Socket Default port: 30020 TCP

Vinten Automation Server Vinten port: 11239 TCP

Viz One REST API port: 80 HTTP

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 17

Application Port Protocol

Viz Arena Web API port: 40055 HTTP

Viz Object Tracker Default port: 10005 HTTP

Art-Net Integration Default port: 6454 TCP

Monogram Integration Default port: 51234 UDP

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 18

3.2 System Requirements
This page describes the minimum software and hardware requirements for Viz Arc.

3.2.1 Minimum Software Requirements
The following are minimum software and version requirements for Viz Arc to function properly:

General

 Windows 10/11
 Microsoft .NET Core Framework 8.0
 CodeMeter version 8.00 and later

Vizrt Software

 Viz Engine/Artist 3.14.x: Must be installed as a Video machine and shared memory output must be configured
for built-in Viz Output to function.

 Graphic Hub 3.5.0
 Graphic Hub REST 2.5.0

Epic Games Unreal Engine

 Unreal Engine 5.2 or higher is required for Unreal integration.

AI

 AI features in Viz Arc require a valid AI License.
 Active internet connection (for AI processing).
 For Claude Desktop integration: Claude Desktop application installed.

3.2.2 Minimum Hardware Requirements
Viz Arc runs on the following platforms:

 Windows 10/11 (64-bit only)
 Windows Server 2012 R2

For optimal performance, use the pre-installed Windows image from Vizrt. You can obtain Windows image files from
your local support office.

The following prerequisites apply to all platforms. Applying the changes may require local administrator access
rights, new or amended group policy entries, or modified services. Contact your local IT manager for assistance.

Note: To integrate with Viz Virtual Studio, Tracking Hub 1.1 or higher must be installed.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 19

Please refer to the relevant Viz Engine version hardware requirements.

3.2.3 Antivirus
Vizrt does not recommend or test antivirus systems in combination with Vizrt products, as the use of such systems
can potentially lead to performance losses. The decision for the use of antivirus software and thus the risk of
impairments of the system is solely at the customer's own risk.

There are general best-practice solutions, these include setting the antivirus software to not scan the systems
during operating hours and that the Vizrt components, as well as drives on which clips and data are stored, are
excluded from their scans (as previously stated, these measures cannot be guaranteed).

Services and folders which should be excluded from scanning are:

 All the files contained in C:\Program Files\Vizrt\Viz Arc x.x (where x.x is the version of Viz Arc).
 All the files contained in C:\programdata\vizrt\vizarc.

https://documentation.vizrt.com/viz-engine

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 20

4 Installation
Before installing the software, make sure your computer meets the System Requirements for hardware and
software and that you have installed all related Vizrt software.

This section covers the following topics and procedures:

 Installing Viz Arc
 WIBU-based Licensing System
 Launching Viz Arc
 License
 Files and Folders
 Unreal Plug-in
 Engine Service
 Configuring Graphic Hub
 Script Debugging

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 21

4.1 Installing Viz Arc
1. Uninstall any previously installed Viz Arc versions.

2. Select the parts you want to install on the target machine:
a. Viz Arc, the main application.
b. Viz Arc REST Service, required when Viz Arc actions shall be called from Viz Pilot, Pilot Edge or the

MOS integration.
c. Viz Arc Engine Service, required on machines running an Unreal Engine which are controlled by Viz

Arc. This installer contains the Viz Arc communication plugins for the Unreal Engine which can be
found in C:\ProgramData\vizrt\VizArc\Resources\unreal after installation. When the installer detects
an existing Unreal installation it offers the automatic deployment of the plug-in when the respective
checkbox is selected.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 22

Note: After installation, you must first configure your system, and request and apply the license to use all
of the software features.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 23

4.2 WIBU-based Licensing System
This chapter describes management and usage of the licensing system based on CodeMeter from WIBU
Systems available in Viz Arc 1.0 and later.

4.2.1 Important Pre-installation Information
The WIBU licensing system requires the installation of the CodeMeter Runtime Software (included in the Bundle
installer):

 8.00 and newer

When the license should be retrieved from a dedicated license server, it must be configured in the Vizrt Licensing
Service (see Client Configuration section of the Vizrt Licensing Administrator Guide) or the CodeMeter
WebAdmin.

See Also

 Vizrt Licensing Administrator Guide

Important: Any change in the license configuration requires a restart of Viz Arc.

Info: There is an auto discovery if no license server is configured in the server search list of CodeMeter.

Info: On network disconnect and reconnect, it may happen that a license is checked out twice. Should that
occur, release the license manually on the CodeMeter service on the license server or restart the license
server.

https://www.wibu.com/
http://documentation.vizrt.com/vizrt-licensing

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 24

4.3 Launching Viz Arc
Once you've installed Viz Arc, you're ready to start using it! If you don’t have a license yet and the system cannot
find any compatible license, the following (or similar) message appears:

In case a specific license has been selected but it could not be found, the following dialog appears.

Select Yes to reset the license type to Auto, then start Viz Arc again. When the application starts you can try again to
select a specific license.

Select No if you don't want to change the configuration. See the Licensing section for more information.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 25

4.3.1 Command Line Arguments
The following command line switches can be used:

Switch Description

-o, --onair Start Viz Arc in On Air Mode.

--project name The name of the project to be loaded at startup.

Use prefix "local:" or "file:" to explicitly specify a project form the local
file system or
use the prefix "gh:" or "graphichub:" to specify a project stored on
Graphic Hub.

--projectgh name The name of the project on Graphic Hub to be loaded at startup.

--programdatapath

path

Specify the Viz Arc ProgramData Folder (for example, C:
\ProgramData\vizrt\VizArc).

--noproject Force startup without any project loaded (default is to open the last
opened project).

-t, --tracking Start Viz Arc in Tracking Mode.

-a, --arena Start Viz Arc in Arena Mode.

--help Display help when started from a console.

Examples

VizArc.exe --project gh:VirtualSetA : Starts Viz Arc loading the project VirtualSetA from Graphic Hub.

VizArc.exe --project local:ObjectTracker -t : Starts Viz Arc loading the project ObjectTracker
form the local file system and it starts up with the Object Tracker user interface already opened.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 26

4.4 License
There are three types of licenses available for Viz Arc:

4.4.1 Viz Arc Core
This is the standard license, allowing you to work unlimited with Viz Arc.

4.4.2 Viz Arc Freemium
This license allows you to work with Viz Arc, but does not allow you to save or load actions other than the Chroma
Key Action. The license is intended to be used by users that need to control the internal Precision Keyer of the Viz
Engine.

4.4.3 Viz Arc AI
This license allows you to use the AI feature in Viz Arc. It needs to be coupled with either the Core or the Freemium
license.

4.4.4 Viz Arc REST
This license is not mandatory for the standard operations of Viz Arc. It is intended for users that need to trigger
actions from external applications like Viz Pilot or Viz Mosart. It is required by the Viz Arc REST service that is an
additional package included in the bundle installer. The service runs independently from any opened Viz Arc
instance and allows the user to trigger actions from any project at any time.

By default, the REST server tries to acquire a license based on the Viz Arc's desktop application license selection (if a
local license is configured, the REST service looks for a local license as well). The license location for the REST server
can be forced using a command line switch --RESTLicenseType . Valid values are:

 0 = Network - Local
 1 = Local - Network
 2 = Network
 3 = Local

Note: Without a valid AI license:
 The AI Prompt panel is hidden in the Template Designer.
 MCP Server tools return a license required message.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 27

 101 = Network - Local v3
 102 = Local - Network v3
 103 = Network v3
 104 = Local v3

The switch can be added to the registry entry
under Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\VizArcRestService.exe:

The sample above forces the usage of a v3 license giving precedence to a network license over a local license.

4.4.5 License Locations
Licenses can be either on the network, on a WIBU dongle or in a software container. The default order of priority to
acquire a license is network first and then any local dongle or software container.

If you need to explicitly disable any network license location, you need to configure the loopback device
127.0.0.1 as your only source in the WIBU Server Search List.

Information: This setting might impact other locally installed software packages like the Viz Engine that
might require a network license.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 28

4.4.6 License Configuration
The type of license to acquire can be configured in the configuration panel under LICENSE INFO.

Use the License Type dropdown to select the license type and location preference.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 29

 Auto Select: Selects the most powerful license that can be acquired (thus first CORE and the FREEMIUM)
automatically, searching first for a license on the network and then locally.

 CORE Network - Local: Forces the allocation of a a CORE license, searching first on the network and then
locally.

 CORE Local - Network: Forces the allocation of a a CORE license, searching first locally and then on the
network.

 CORE Network: Forces the allocation of a a CORE license over the network.
 CORE Local: Forces the allocation of a a CORE license locally.
 FREEMIUM Network - Local: Forces the allocation of a a FREEMIUM license, searching first on the network

and then locally.
 FREEMIUM Local - Network: Forces the allocation of a a FREEMIUM license, searching first locally and then

on the network.
 FREEMIUM Network: Forces the allocation of a a FREEMIUM license over the network.
 FREEMIUM Local: Forces the allocation of a a FREEMIUM license locally.

All the above licenses options exist also as V3 variation, for the case the Version 3 license needs to be used.

The AI license can be sourced from a different location and can be configured selecting the respective item from the
AI License Type dropdown:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 30

 Disabled: Disable the AI feature altogether
 Auto Select: Automatically search and select the AI license, searching first for a license on the network and

then locally.
 AI Network - Local: Forces the allocation of a a AI license, searching first on the network and then locally.
 AI Local - Network: Forces the allocation of a a AI license, searching first locally and then on the network.
 AI Network: Forces the allocation of a a AI license over the network.
 AI Local: Forces the allocation of a a AI license locally.

Please contact your local Vizrt sales representative for any additional licensing information.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 31

4.5 Files and Folders
Files and folders that are used or modified by Viz Arc are listed below.

Depending on the logged user, related files and folders can be found under %localappdata%\vizrt\VizArc. When the
user has administrative privileges, the location is c:\ProgramData\vizrt\VizArc\.

The read-only folder can be seen in the General Configuration Settings, based on the logged user launching Viz Arc.

The first time a non-administrative user launches Viz Arc, the config and profile settings are copied from c:
\ProgramData\vizrt\VizArc\, to the local application data folder. This way, an administrator can create a global
default configuration for all users logging onto the system.

 config: Contains config.json file with all default and custom Viz Arc configurations.
 keybinds: Contains keybinds.json file used to determine system keyboard shortcuts.
 Logs: Contains a text log file containing every log name, date, log level and message since the first launch of

the application.
 profiles: Contains profiles.json file where configured profiles and corresponding Channels and Engines are

stored.
 projects: Contains a sub-folder and .json file for each saved Viz Arc project. You can change project folders in

the Settings > Application Settings panel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 32

 Resources: Contains useful resources (for example, plug-ins for external devices, Unreal plug-ins and Viz
archives).

 temp: Contains temporary files that are automatically created and deleted in case of a software crash.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 33

4.6 Unreal Plug-in
The Unreal plug-ins can be found in the program-data folder (typically in C:\ProgramData\Vizrt\VizArc)
under Resources\Unreal.

The plug-ins are usually installed automatically. However, in case an Unreal Installation was not detected or not
present during installation, the plug-ins can be copied manually from the above resource folder.

Navigate into the subfolder matching your Unreal version. From within the respective subfolder, copy the entire
VizArc folder into the Unreal installation folder (for example, C:\Program Files\Epic Games\UE_5.3\)
under Engine\Plugins or under Engine\Plugins\Runtime.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 34

After copying the plug-in, restart Unreal Engine and ensure the plug-in is activated (it is active by default). To verify,
open Unreal Engine and go to Edit > Plugins. You should find the Viz Arc plug-in by searching for VizArc.

The communication port that is used by this plug-in in order to receive commands from Viz Arc is by default 5647 .
It can be changed by changing the registry key in UEPluginPort in HKEY_LOCAL_MACHINE\SOFTWARE\vizrt\Viz Arc.

See Also

 Engine Service

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 35

4.7 Engine Service
Engine Service is a scheduled task that needs to be installed on each Unreal Engine machine that is controlled by
Viz Arc. Engine Service detects installed Unreal Engine versions, and helps launch a project and select a map within
the project. It is not mandatory to install Viz Arc or the Viz Arc Web Service. The Unreal Loader needs to be
installed on any machine running an Unreal Engine that is ought to be controlled by Viz Arc, which might run on a
different machine.

4.7.1 Prerequisites
Make sure the MS Visual C++ 2015-2022 Redist (x64), Windows Desktop runtime and Asp.Net Core runtime are
installed on the target machine. The bundle installer silently installs them in case they are not present on the target
machine.

4.7.2 Installation
Run the Viz Arc bundle installer and select the Viz Arc Engine Service:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 36

The installer detects any compatible Unreal Engine version and installs the Viz Arc plug-in to the respective Unreal
installations.

The registry key used is InstalledDirectory and can be found in the registry under:

 Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\5.2
 Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\5.3
 Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\5.4
 Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\5.5
 Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\5.6

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 37

The plug-in gets installed under the subfolder Engine\Plugins\VizArc of the respective Unreal Engine installation
(for example, C:\Program Files\EpicGames\Unreal Engine\5.3\Engine\Plugins\VizArc).

4.7.3 Manual Installation
The plug-ins can be copied manually to the Unreal Engine plug-in folder. After installation of the Unreal Loader, the
plug-ins can be found under the folder C:\ProgramData\vizrt\VizArc\Resources\unreal.

Select the version to install and copy the entire VizArc folder to the Unreal plug-in destination folder. For example,
copy C:\ProgramData\vizrt\VizArc\Resources\unreal\5.3\VizArc to C:\Program
Files\EpicGames\UE_5.4\Engine\Plugins\VizArc.

4.7.4 Starting Engine Service
After successful installation the Unreal Loader starts automatically and whenever a user logs on to the system it
starts as a scheduled task. To see the task settings execute the windows command taskschd.msc.

Unreal Registry Entries: On some machines, the registry entries might not be present although the
Unreal Engine is installed correctly. This usually occurs when the Unreal Engine installation has been
executed without administrative privileges. The registry entries can either be added manually or the plug-
in can be installed manually (see below).

Warning: Different versions are not compatible.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 38

Under the name VizArcEngineService all the settings of the scheduled task can be reviewed. Check the task manager
whether the process is running. The process can be terminated and started using the context menu on the
scheduled task.

4.7.5 Configuration
The first time you start the service, registry keys are generated with default values for communication ports and
unreal startup parameters. The registry key can be found in HKEY_LOCAL_MACHINE\SOFTWARE\vizrt\Viz Arc.

Note: The service itself does not require any licenses.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 39

The relevant keys and their default values are:

 UELoaderServerPort: The communication port used by Viz Arc to talk to this service. Default is 5644 .
 UELoaderCommandLine: The default command line suffix added on each Unreal Engine start up. Default is
-game -RCWebControlEnable -RCWebInterfaceEnable -noverifygc -novsync

-nosound -log -windowed resx=1920 resy=1080 .

 UEPluginPort: The communication port to be used by Viz Arc to talk to the Viz Arc Unreal Engine Plugin.
Default is 5647 .

4.7.6 Troubleshooting

Logging
The Windows event viewer contains some basic logging of the service. Under Application and Services you can find
a VizArcLog that contains all relevant log entries:

Note: The default resx and resy are configured to be HD format. Change this accordingly if your output
format is different. Add the log flag to launch the engine in offscreen mode with the output console only.

Render off-screen: When used together with the Viz Engine integration, it is recommended to add the
-RenderOffScreen switch to the command line, so the rendering takes place off screen.

Note: The UEPluginPort is not used directly by Unreal Loader.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 40

Among other events the event viewer logs which project and map is loaded through Viz Arc and which Unreal
Installations have been found after start-up. The Unreal Loader identifies the Unreal installations based on the
registry keys found in Computer\HKEY_LOCAL_MACHINE\SOFTWARE\EpicGames\Unreal Engine\.

User
The service launches the Unreal Engine with the user that is currently logged on. Make sure a user is logged in on
the machine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 41

4.8 Configuring Graphic Hub

4.8.1 Configuring Graphic Hub for the Viz Arc Template Workflow

As there is currently no way to automatically generate and publish add-ons in Viz Graphic Hub, a few manual steps
must be performed in Graphic Hub. You need to use Viz Graphic Hub Manager to connect to your Graphic Hub.

There are two ways to create the necessary add-ons on Graphic Hub: importing an archiving or creating them
manually. This section covers the following topics:

 Configuring Graphic Hub for the Viz Arc Template Workflow
 Import an Archive Containing Add-ons
 Manually Creating Add-ons

4.8.2 Import an Archive Containing Add-ons
The archive to be imported anywhere on the Graphic Hub is located in the program-data folder (typically C:
\ProgramData\vizrt\VizArc) under the Resources\AddOns folder and is called VizArcAddOns.via. It contains a dummy
image with all necessary add-ons attached.

You can also import the add-ons through Viz Arc. When Viz Arc detects a missing add-on, e.g. on the template
section, you can use the Create Add-Ons button to import the above archive automatically. After importing the
archive you will be able to create and import templates and store projects on Graphic Hub.

Note: This step is only necessary if you want to use the template based workflow or if you want to store
projects on Graphic Hub and is not required for other use cases.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 42

4.8.3 Manually Creating Add-ons
1. Log in to Graphic Hub using Graphic Hub Manager:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 43

2. Go to Tools and select Administer add-ons...:

3. Create a new add-on.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 44

4. Name the new add-on Template_Content. Note that the name is case-sensitive. Tick the boxes Allow
transfer via DCC and Allow transfer via archive export/import.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 45

5. Click Add… to add an entry.
 Call the new entry Content.
 Select XML as data type.
 Add something like Viz Arc Template Content under Info.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 46

6. Return to step 3 above and add another add-on:
 Name the add-on Template_Info. Bear in mind that the name is case-sensitive.

 Add an entry under Info, something like Viz Arc Template Info. The data type must be XML.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 47

Your add-ons should now look like those in the screenshot above.

8. Publish by right-clicking the two add-ons and selecting Publish add-on ….

Note: You can add the add-ons to a group if you wish. Viz Arc finds them regardless of which group they
belong to.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 48

A warning message appears:

 Click Yes.
 Make sure to publish both add-ons.

Once you have restarted Viz Arc you can use the Design tab to create your own templates.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 49

4.9 Script Debugging
To get useful information on the Viz Arc scripting console when errors occur, it's necessary to install a debugger on
the target system.

4.9.1 How to Enable Viz Arc Script Debugger on Windows 7/8/8.1/10

Issue Details
I would like to debug my script (main or template script) in Viz Arc, but I don’t get the line of the occurrence on the
console output when the script runs into errors. What can I do?

Solution

Viz Arc
The registration process of the pdm.dll differs depending on the version of the OS. To register the .dll, run cmd in
admin (elevated) mode and type the command below that corresponds to your software configuration:

 Windows 7/8/8.1: Regsvr32.exe "C:\Program Files\Internet Explorer\pdm.dll"

 Windows 10 (up to version 1511): Regsvr32.exe "C:\Windows\System32\F12\pdm.dll"

With Windows 10 version 1607 and above, pdm.dll can no longer be registered manually, but must be automatically
registered by a Microsoft product. If attempting to register manually, RegSvr32.exe throws error 0x80070715.

One way to automatically register the .dll is to install Microsoft's Remote Tools for Visual Studio. Download the x64
version. This free tool will install and register the PDM. After installation, Viz Arc will automatically recognize the
registered .dll.

Additional Information
Viz Arc Script is based on ClearScript which relies on the Microsoft Script Debugger that was released in 1997. This
tool could be used to debug Visual Basic scripts (VBScript) or Java scripts (JScript) and was a complement to
products such as Internet Explorer 4.0 and Internet Information Server 4.0. Until recently, it was a tool that
Microsoft provided as a separate download on their homepage. It installed a shared library called the Process

https://www.visualstudio.com/downloads/#remote-tools-for-visual-studio-2015-update-3

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 50

Debug Manager (PDM), which Viz Arc/ClearScript uses to debug its own VBScripts/JavaScript.

With Windows 7/8/8.1/10, users do not need to install this file separately, provided they have either MS Office or
Visual Studio installed. It also installs with Internet Explorer 8 and above but is not registered (see the steps for
registering the pdm.dll above). As the PDM library is already available on these systems, you only need to make sure
the active .dll is registered in order for Viz Arc to recognize it.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 51

5 Configuration
To access the configuration panel, press the CONFIG icon on the top right of the main window or go to the main
menu and select System > Configuration.

This section covers the following topics:

 General Configuration
 General Settings
 Profiles
 Keyboard Shortcuts
 Video Settings
 GPI Setup
 Timecode Setup
 Clip Setup
 Info
 AI MCP Server
 Tracking
 Vizrt Systems
 Third Party Systems
 Loupedeck Integration
 Stream Deck Integration
 Preview Studio Configuration
 Companion Integration

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 52

5.1 General Configuration
General Configuration is the main configuration window. Here the user can set parameters that are required for Viz
Arc to function correctly with systems like Viz Engine, Graphic Hub and Tracking Hub.

To reach the Viz Arc Configuration there are two ways, as shown in the picture below:

1. Click on the menu bar item System > Configuration.
2. Click on the CONFIG button on the main window.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 53

5.2 General Settings
Set application level preferences using the menu below:

5.2.1 System
The read-only Settings Directory indicates where Viz Arc stores configuration and log files. For users with
administrative provileges this is c:\ProgramData\vizrt\VizArc while normal users can find their configuration files
and logs in %localappdata%\vizrt\VizArc\. The Reveal button opens the respective directory location in a Windows
File Explorer.

Set the Log Level using the System menu:

 ALL: Shows all level logs (below).
 TRACE: Shows traced code; useful for identifying errors in a function if there is a software crash. Logs all

commands sent to the Engine in a separate log file.
 DEBUG: Shows specific technical information.
 INFO: Shows the main information in a log.
 WARN: Shows issues that may potentially cause application anomalies.
 ERROR: Shows any error that is fatal to the operation.
 FATAL: Shows only errors that force a shutdown of the application to prevent data loss.
 OFF: Switches logs Off .

5.2.2 Communication

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 54

 REST Web API Port: The REST port used for listening to incoming requests by the Viz Arc REST server.
 REST Web API HTTPS Port: Same as above, but for the HTTPS clients. Requires the setup of the PFX

certificate parameter (below).
 Arc TCP Server Port: The TCP Server port to be used for incoming TCP Connections.
 UDP DataMap Server Port: The UDP Server port to be used for incoming UDP packets for DataMap updates.
 MQTT Broker Port: The internal MQTT Broker port to be used. Set to 0 to disable the Broker.
 In-App Web API Port: The port to be used for the internal web server.
 In-App Web API HTTPS Port: The port to be used for the internal web server.
 Whitelist IP Range: Specifies a semi-colon (;) separated list of IP addresses/ranges (in CIDR notation)

allowed to access the web server.
 PFX Certificate: The path to the PFX certificate required to enable HTTPS for the REST service.
 PFX Password: The password of the PFX certificate.

5.2.3 General

 Launch Viz Engine on startup: Launches Viz Engine on Viz Arc application startup, when enabled.
 New actions start in edit mode: Starts new actions in edit mode when created when set to On .

 UI Left to Right: Switches the UI to right to left mode (experimental) when set to Off .

 Use Small Size Actions: Uses smaller buttons for Actions when set to On .
 Use CTRL to popup action groups: Hold CTRL while left clicking on the Expand button of a Group Action to

expand the group temporarily as a popup. Disable this option to make this the default behavior without
holding the CTRL button.

 Enable Graphic Hub's web browser: Uses web view based Graphic Hub browser for scene browsing.
 UI Language: Determines the language to be used for the UI (feature under development).

Note: All settings take effect upon restart of the REST service or Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 55

5.2.4 Playlist

 Default Row Duration: The default duration of a playlist row on creation.

5.2.5 Scripting

 Compile scripts on project load: Forces any custom script included in the project to be compiled when
opening a project.

 Main Script Debug Port: The debug port to connect an external debugger for the main script.
 Editor Script Debug Port: The debug port to connect an external debugger for the script in the template

designer.
 JS Modules Search Path: Sets the JavaScript module path. Use a semi-colon (;) to separate multiple paths.

5.2.6 Project Folder
This menu contains the path where projects are saved. You can change the Viz Arc project folder at any time:

5.2.7 Unreal Engine

 Ignore Actors with name: A regular expression (in C# syntax) that excludes Unreal Actors when parsed from
a BluePrint Actor (for example, the BluePrint Action or in a Unreal Template). Leave this field empty if all
Actors should be considered. Another sample could be (bCanBeDamaged|RuntimeGrid|bIsSpatiallyLoaded).
This regular expression would exclude all actors with the exact name bCanBeDamaged or RuntimeGrid or
bIsSpatiallyLoaded. Switch the Log Level to at least INFO to see in the log which Actors got effectively
ignored (for example, after creating a BluePrint action).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 56

5.2.8 AI/LLM Configuration
For the AI feature(s), choose between the two AI providers Anthropic or OpenAI.

 AI Provider: Selects either Anthropic Claude or OpenAI ChatGPT.
 API Key: Uses the API key provided by the AI provider.
 Model: Selects the model to be used for AI based on the provider.
 Include Documentation: Determines whether to send Viz Arc` documentation along with AI prompts.

Disable this to reduce token usage, enable it to get better results.

5.2.9 Map
A key Viz Arc feature is the ability to set up augmented reality elements, tracked cameras and polygon masks in
outdoor productions directly over a map.

To use Bing maps and the search feature, please create an API key, read more here.

Select a Default Provider for map imagery using the Map menu below:

 Default Provider: Selects the default map provider for the map section
 Bing Satellite, raw satellite view.
 Bing Hybrid, satellite including boundaries/places, street names and roads as overlay.
 Bing Just the map view showing boundaries/places, street names and roads.

 Bing API Key: The API Key used to download map tiles and location searches on the set view. Use the refresh
button to check the entered API Key. A restart of the application is required to use the new API key.

5.2.10 Toast Notifications
Toast notifications show notifications on the bottom right of the window to show actions being triggered by
external triggers (such as the web API). They can be enabled or disabled here.

https://learn.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key
https://www.bing.com/maps
https://www.bing.com/maps
https://www.bing.com/maps

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 57

5.2.11 Performance

Use this menu to select the following Performance options:

 Get thumbnails from Unreal: Enables the retrieval of thumbnails from Unreal Engine.
 Enable action background logo: Enables a watermark logo to be displayed on Actions, to clearly show the

type of action.
 Preload actions on all tabs: Enables to preload all the action UI’s on all tabs when opening a project. This

increases load times, but it eliminates loading lags when opening a different action tab for the first time. This
might be convenient for large projects.

5.2.12 User Interface Appearance
Use these settings to customize the UI appearance for builder and On Air mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 58

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 59

1. Menu Bar: Toggles the menu bar containing the new, open, save, save as, undo/redo initialize and cleanup
shortcuts. Most items still be reached through shortcuts or the menu.

2. Profiles/Status Bar: Toggles the bottom bar containing the profiles selection and the channel status
information.

3. Action Toolbar: Toggles the toolbar containing shortcuts to create actions.
4. Tools: Toggles the left hand side tool bar. Tools can still be reached through the View menu.
5. Scene Loader/Templates: Toggles the left hand side of the UI containing the scene loader and the

templates.
6. Playlist/Scripting/Output: Toggles the right hand side of the UI containing the script, playlist and output

panel.
7. Favorites: Toggles the favorites bar.
8. Scripting Console: Toggles the scripting console.
9. Action Edit Toolbar: Toggles the action toolbar containing color selection and more when editing an action.

Most properties can still be changed through the context menu.
10. Channel: Toggles the channel visibility on the action.
11. Edit Button: Toggles the action’s edit button. The action can still be edited using the context menu.
12. Destination: Toggles the Viz scene-specific action’s destination property.
13. Container Path/Actor ID: Toggles Viz scene-specific action’s scene path and Unreal specific actor IDs.
14. 1-Click Action: In case the Action Toolbar is switched off in On Air mode, this options allows you to toggle

the 1-Click action behavior.
15. 1-Click Group: In case the Action Toolbar is switched off in On Air mode, this options allows you to toggle

the 1-Click group behavior.

5.2.13 Default Color Setting
You can assign a default color for each action, such as transformation, alpha, visibility and so on. You can still assign
a different color in the main area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 60

See Also

 Project Action Types for more information on how to execute Viz Trio pages.
 GPI Setup for more information about setting up GPI Triggers and Callbacks.
 Video Settings
 Configuring Viz Engine
 Viz Trio User Guide
 http://www.vinten.com/
 Playlist

https://docs.vizrt.com/viz-trio
http://www.vinten.com/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 61

5.2.14 Configuring Viz Engine
In order to see a preview in Viz Arc, the following three settings in Viz Config must be configured:

 Video Output
 Video Board

In Viz Engine, go to the Viz Configuration tab and select:

1. Video Output SHMOutput: Set Shared Memory Output option to Active.

2. Video Board: For non-Matrox configurations, you must configure the following:

 Software I/O Mode: Make sure SHM Channels is selected.
 Check Video Card: Must be set to: User Defined.

For Matrox systems, just check the Matrox check box.

Note: Please verify that your system meets the version requirements.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 62

See Also

 Viz Engine Administrator Guide for more details on the different configuration options for your version of Viz
Engine.

https://documentation.vizrt.com/viz-engine

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 63

5.3 Profiles
1. Profiles: Used to configure the different groups of Viz or Unreal Engines available for control by the user;

these groups are called Channels.
2. Engine and Channel Settings: Used to configure Program/Preview, the concept and an execution delay

each Engine.
3. Engines list: Viz Arc is capable of controlling more than one Viz Engine at the same time. For example, when

working with multiple tracked cameras. This menu contains all the Engines assigned to a given channel.
4. Enabled Layers: Layers enabled in the Scene Tools when selecting a channel and selecting into which layer

a scene is loaded.
5. Channels: A channel is a group of Viz Engines (or Unreal Engines) that receive the same commands at the

same time. For example, when executing actions or loading a scene.

To access the Profile config menu, press the Profiles icon on the left of the window in the Config panel:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 64

This section covers the following topics:

 Profile Configuration
 To Add a New Profile
 To Rename a Profile
 To Delete a Profile

 Engine Configuration
 Add a Viz Engine
 To Add an Unreal Engine
 To Add a Flowics Output
 To Rename or Edit an Engine
 Configure and Engine settings

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 65

 To Delete an Engine
 Channel Configuration

 To Add a Channel
 To Assign Engines to Channels
 To Rename a Channel
 To Delete a Channel
 To Enable Available Viz Layers
 To Select Unreal Engine Version
 To Select a Profile

5.3.1 Profile Configuration

To Add a New Profile

Press the CREATE PROFILE icon in the middle of the window or the plus icon next to the existing profiles.

To Rename a Profile

1. Double-click on the profile name.
2. Insert the desired name.
3. Click ENTER.

To Delete a Profile

1. Right-click on the profile name.
2. Select Delete Profile in the context menu.

Note: To connect Viz Arc to an Unreal Engine you need to copy the VizArc folder to \Epic
Games\UE_4.20\Engine\Plugins.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 66

5.3.2 Engine Configuration

Add a Viz Engine

1. Press the NEW ENGINE icon on the right of the window or the add icon at the top of the Viz
Engines list.

2. Enter the display name, host/IP and port in the box that appears.

The Feedback Port is the command_feedback_port as configured on the VizEngine (default 7476).
3. Press ENTER.

To Add an Unreal Engine

1. Press the NEW ENGINE icon on the right of the window or the add icon at the top of the
Unreal Engines list.

2. Enter the display name, host/IP and Viz Arc Unreal Engine plug-in port and the Launcher Port in the boxes
that appear.

Note: The Engines List is global for all Profiles configured in Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 67

3. Press ENTER.

To Add a Flowics Output

1. Press the NEW OUTPUT icon.
2. Enter the display name of the new output and enter its API token. The API token can be found on Flowics

output control page, under the settings panel:

To Rename or Edit an Engine

1. Right-click on the Engine name.

2. Select Edit Engine in the context menu or press the Edit icon next to the Engine name.
3. Enter display name, host/IP and port.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 68

4. Press ENTER.

Configure and Engine settings

 It's possible to assign every Engine as a Program or Preview engine.

 An Engine can also be set as Editing Engine, which means the Engine is used for a
scene tree load, or to select and objectify a Transition Logic scene, for example.

 The Concept determines which scene concept is used by the engine when a
scene is loaded through the Scene Loader Action or a Template Action. The Execution Delay can be used to delay
all commands that are sent to the engine. This can be useful for set-ups involving (for example, AR and Videowall)
Engines where output runtimes of the various subsystems are not uniform.

To Delete an Engine

1. Right-click on the Engine name.
2. Select Delete Engine in the context menu.
3. Confirm by pressing Yes.

5.3.3 Channel Configuration

To Add a Channel

Press the NEW CHANNEL icon in the middle of the profiles section or the Add icon at the top of
the Channel’s list.

Warning: Setting an Engine that is On Air into editing mode may load a scene tree while another scene is
On Air.

Note: It's possible to create multiple channels and assign a unique name to each channel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 69

To Assign Engines to Channels

Drag and drop Engines from the Engines list (right).

To Rename a Channel

1. Double-click on the channel name.
2. Enter the desired name.
3. Press ENTER.

To Delete a Channel

1. Right-click on the channel name.
2. Select Remove Channel in the context menu.
3. Confirm by pressing Yes.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 70

To Enable Available Viz Layers

Select one or more layers by pressing them in the Channel menu.

To Select Unreal Engine Version
If the channel consists of one or more Unreal Engines, the Channel menu looks like this:

For each Engine, select the Unreal Version to be used by selecting it from the drop down menu. The adjacent start/
restart button starts the respective Unreal version.

Note: Layers let you send scenes and commands to different output levels within Viz Engine. The main
layers are FRONT LAYER , MAIN LAYER and BACK LAYER. graphics are usually sent to the MAIN LAYER. If you
want to view a graphic On Air you need to have at least one layer enabled.

Note: The Launcher Port must be configured properly and the Viz Arc Unreal Loader service must run on
the target machine. See Unreal Loader for more on setting up and configuring Loader service.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 71

 Host/Port: The hostname or IP address running the Unreal Engine and the port on which the Viz Arc Unreal
plug-in is configured to listen to.

 Launcher Port: The port used by the Viz Unreal Loader service.
 Web Interface Port: The port where UE exposes the Remote Control API (UE Version >= 4.26 only).
 WebSocket Port: The web socket port where UE exposes the Remote Control Web Interface (UE Version >=

4.26 only).

WebSocket Port and Web Interface Port are only relevant when the UE Preset actions are used.

To Select a Profile
Once you have created a profile, you can select it from the drop down menu at the bottom left corner of the UI. All
channels containing the selected profile are displayed on the right.

Click on a channel to see which Engines it contains.

https://docs.unrealengine.com/4.26/en-US/ProductionPipelines/ScriptingAndAutomation/WebControl/RemoteControlPresetsAndWebApplication/
https://docs.unrealengine.com/4.26/en-US/ProductionPipelines/ScriptingAndAutomation/WebControl/RemoteControlPresetsAndWebApplication/
https://www.unrealengine.com/marketplace/en-US/product/remote-control-web-interface

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 72

If the channel is an Unreal channel, you can select a different version to run or start/restart the Unreal Engine.

Click on the small triangle at the right of each Engine to see more details about the current Engine configuration.
The first two entries show the shared memory communication port settings, which can be used with scripting
or SHM. To configure the Shared Memory ports on Viz Engine, go to Viz Engine configuration under Communication
> Shared Memory where you can configure UDP and TCP ports for Shared Memory updates.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 73

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 74

5.4 Keyboard Shortcuts
To access the Keyboard Shortcuts configuration menu, select the Keyboard Shortcuts icon on the left of the
window in the Config panel.

5.4.1 Keyboard Shortcuts
Keyboard Shortcuts are divided into three sections:

 System Shortcuts
 Custom Keyboard Action Shortcuts
 Custom Stream Deck Shortcuts

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 75

System Shortcuts

System Shortcuts apply operations that are are global to the Viz Arc system, such as Open Project, Save, Undo,
Redo, etc. System operations that can be controlled with keyboard shortcuts are listed at the top of the window.
It’s possible to change the default shortcut for an existing system action, remove the shortcut, or reset it back to
default.

All modified system shortcuts data is stored in the keybinds.json file. For more details, see Files and Folders.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 76

Custom Keyboard Action Shortcuts

Action Shortcuts are used to assign a key or combination of keys to execute actions. This menu contains a list of all
actions that have a keyboard shortcut assigned and the action box color for the action.

It's possible to assign keyboard shortcuts to any Action in a project and to assign the same keyboard shortcut to
more than one action.
You can add Custom Action Shortcuts directly from this window.

Custom Stream Deck Shortcuts

Custom Stream Deck Shortcuts are used to assign an action (or group) to a specific Stream Deck button (if
connected). This menu contains a list of all actions that have a keyboard shortcut assigned and the action box color
for the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 77

5.4.2 To Manage Shortcuts

1. Click on the Shortcut item.
2. Enter the desired key combination on your keyboard.

To Remove Shortcuts

Press the Trash can icon next to the related shortcut.

To Reset Shortcuts to Default

Press the Reset icon next to the desired shortcut (for system keyboard shortcuts only).

5.4.3 To Add Custom Action Shortcuts
There are two ways to add an action shortcut:

 Config Window

Note: All action shortcuts are stored as part of the project.json file. For more details, see Files and Folders.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 78

 Action Window

Config Window

1. Click the Add button in the Config > Keyboard Shortcuts menu.
2. Select an action from the available options. A new Action row appears in the window.

3. Click on the shortcut area and press the desired keyboard shortcut. It's possible to add both Keyboard and
Stream Deck (if available) custom shortcuts.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 79

Action Window

In the action Edit menu, click on the shortcut area and press the desired keyboard shortcut. It will automatically be
added to the Custom Keyboard Shortcuts list.

See Also

 Actions View to learn more about assigning keyboard shortcuts to actions.
 https://www.elgato.com/en/gaming/stream-deck for more information about Stream Deck hardware.

https://www.elgato.com/en/gaming/stream-deck

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 80

5.5 Video Settings

5.5.1 Preview Output
Preview Output lets you choose between the following outputs:

 Local Viz Output
 Still Preview
 Direct Show Sources
 NDI

The selected source is displayed throughout all Viz Arc interfaces. Use the Refresh button to force the detection of
newly connected sources.

The NDI PTZ Source can be selected explicitly to any NDI source with PTZ capabilities or use localhost (Auto) to
use the same source as selected in Source.

Use the Refresh button on the source to update those sources. The selection enables a PTZ control overlay on the
preview output.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 81

VizOutput
The Viz Arc built-in preview uses the Viz Engine’s Shared Memory communication to display the output of Viz
Engine.

 Max FPS: Limit the maximum number frames per second displayed for the Viz Output, sometimes useful
when experiencing performance issues.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 82

It's also possible to configure VizOutput settings for Channel 1 and Cannel 2:

 VizOutput Key: The VizOutputKey Sync Key is used for receiving the Viz Preview. You must configure the
desired key in the Viz Engine configuration (default key: viz_out_01_00).

 Output port: The default Viz Engine TCP communication port.
 VizOutput Sync Key: The value must match the SHMSyncMasterKey Viz Engine config setting (default key:

viz_engine_SHMsync).

To have a working preview, you must

1. Install Viz Engine as a video machine even if you do not have video hardware installed on your system.
2. Configure VizOutput settings in Viz Arc, in the Video Settings section.
3. Configure your Viz Engine to also output through Shared Memory.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 83

For more information, see Preview Output.

Viz Still Preview

To configure still preview, configure a dedicated Channel in the Profiles section and tag it as Preview Channel. The
communication port must be configured to match the Viz Engine's still preview port, which is by default 50010 . A
still preview configuration example is shown below:

Important! You must also check your Viz Engine Configuration.

Note: This setting is intended for Viz still preview only.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 84

The still preview is used in conjunction with the template workflow and can be generated using the Preview
Selection keyboard shortcut.

NDI

All detected NDI sources are listed here. The icon indicates that the source is a controllable PTZ source.

Direct Show
Viz Arc displays all deleted DirectShow video sources. An example of configuring an external device (HP HD
Camera) connected to Viz Arc is shown below:

Having selected HP HD Camera, select the resolution required:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 85

Press the Properties button. A popup window appears where you can customize output properties.

NDI through DirectShow
DirectShow sources lets you visualize any NDI stream within the system. The NDI tools must be installed on the
system and the NDI Virtual Input needs to run. From there, select the desired NDI stream. In Viz Arc, select
the NewTek NDI Video filter. No further configuration is required on the source filter itself.

https://ndi.tv/tools/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 86

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 87

5.6 GPI Setup

5.6.1 GPI
It's possible to trigger actions using GPI in Viz Arc. Configure settings related to GPI using the menu below:

 GPI IP: IP port that communicates with GPI.
 GPI Slave ID: Defines the Slave ID of the Ethernet box.

5.6.2 Triggers
All action boxes set to Trigger and/or Callback, and their related channels (HI-0/HI-15, LO-0/LO-15) are shown in the
menu below:

It's possible to add every action box set in the main area as Trigger and/or Callback:

Note: Currently, only the Sealevel SeaI/O-410E board is supported.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 88

To remove an element, click the trash icon next to the element you want to delete.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 89

5.7 Timecode Setup

5.7.1 Time Code
Enable or disable Timecode based triggering. Choose between AV Card or NDI Stream as Timecode source.

Please refer to the Timecode configuration section for more information.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 90

5.8 Clip Setup

This menu lets you set up presets for Viz Coder or Clip out channel. To add a preset, click the ADD icon:

5.8.1 Coder Preset

 To create a valid connection to retrieve preset profiles, insert the correct address and port and press the
Connect button.

 Once connected, you can use settings to:
 Insert a custom preset name (if empty, once you select a profile it automatically sets the default

name).
 Select an available profile from a list.
 Set the SHM unique ID (the same one you configured in Viz Engine). Audio mix contains values that

determine the audio settings. The expected preset values are shown on the left.
 A one-click option is available that lets you record files without inserting default settings each time (for

example, directory, filename and full path name).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 91

Once created, the new preset is added to the coder preset list. You can remove or modify preset parameters by
pressing the respective icon next to the item.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 92

5.8.2 Viz Recorder Preset

 First, insert the correct address and port to retrieve the profile list.
 Once connected, use the settings menu to:

 Insert a custom preset name (once you select a profile it automatically sets the default name).
 Select an available profile from a list.
 Choose the file type to export (video, audio and/or key). In the case of video export, you can also

associate .waw, .w64 or .aiff audio types.
 A one-click option is available that lets you record files without inserting default settings each time

(for example, directory, filename and full path name).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 93

The XML file, called VizRecorderProfiles.xml, containing all codecs is found in a list in the config subfolder. Here, you
can add or modify items in the list.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 94

The newly created preset is added to the coder preset list. You can remove or modify preset parameters by pressing
the respective icon next to the item.

All presets are displayed in the toolbar combo box.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 95

See Also

 Configuring Viz Engine for more information about configuring Shared Memory.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 96

5.9 Info
The Info window contains general software information:

 Viz Arc license details.
 General Software Copyright and licensing.

Info: Contact your local Vizrt Support Representative or send an email to license@vizrt.com to obtain a
license.

mailto:license@vizrt.com

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 97

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 98

5.10 AI MCP Server
 MCP Server Integration

 Compatible MCP Clients
 Architecture Overview
 Setup Instructions

 Available AI Tools
 Static Tools (Always Available)
 Dynamic Tools (Require Viz Arc Running)
 Modifying Parameters

 Troubleshooting
 AI Prompt Panel Not Visible
 MCP Server Not Connecting
 "AI License Required" Error
 Documentation Not Loading
 Dynamic Tools Not Working

5.10.1 MCP Server Integration
Viz Arc includes an MCP (Model Context Protocol) server that enables integration with AI assistants and
development tools. MCP is an open standard (now under the Linux Foundation) that provides a universal way to
connect AI tools to external data and capabilities.

Compatible MCP Clients
The Viz Arc MCP server works with any MCP-compatible client, including:

Client Type Notes

Claude Desktop Desktop App Anthropic's desktop application

ChatGPT Desktop Desktop App OpenAI's desktop application (MCP support added
March 2025)

Cursor IDE AI-powered code editor with MCP support

VS Code + Copilot IDE GitHub Copilot agent mode supports MCP

Windsurf IDE Built-in MCP Plugin Store

Cline VS Code Extension Autonomous coding agent with MCP integration

Continue IDE Extension Open-source extension for VS Code and JetBrains

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 99

Client Type Notes

OpenAI Codex CLI/IDE Supports MCP servers in CLI and IDE extension

Architecture Overview

MCP Client VizArc.McpServer.exe Viz Arc
(Any compatible) <----> (Lightweight server) <----> (Main application)
 stdio REST API

Benefits
 Work with multiple AI tools, not locked to one provider.
 Use your existing AI subscriptions.
 Access Viz Arc documentation and templates from your preferred tool.
 Create and modify templates through natural conversation.
 Work alongside the main Viz Arc application.

Setup Instructions

Step 1: Locate the MCP Server
Find VizArc.McpServer.exe in your Viz Arc installation:

C:\Program Files\Vizrt\Viz Arc\VizArc.McpServer.exe

Step 2: Configure Your MCP Client
Configuration varies by client. Below are examples for popular MCP clients.

Claude Desktop

1. Open configuration file: %APPDATA%\Claude\claude_desktop_config.json.
2. Add the configuration:

{
 "mcpServers": {
 "vizarc": {
 "command": "C:\\Program Files\\Vizrt\\Viz Arc\\VizArc.McpServer.exe",
 "args": []
 }
 }
}

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 100

3. Restart Claude Desktop completely (check system tray).

ChatGPT Desktop

1. Open ChatGPT Desktop settings.
2. Navigate to MCP Servers section.
3. Add new server with command: C:\Program Files\Vizrt\Viz Arc\VizArc.McpServer.exe.
4. Restart ChatGPT Desktop.

Cursor

1. Open Cursor Settings (CTRL + ,).
2. Navigate to MCP section.
3. Add server configuration:

{
 "vizarc": {
 "command": "C:\\Program Files\\Vizrt\\Viz Arc\\VizArc.McpServer.exe",
 "args": []
 }
}

4. Restart Cursor.

VS Code with GitHub Copilot

1. Open VS Code Settings (CTRL + ,).
2. Search for MCP.
3. Edit settings.json and add:

{
 "github.copilot.chat.mcpServers": {
 "vizarc": {
 "command": "C:\\Program Files\\Vizrt\\Viz Arc\\VizArc.McpServer.exe",
 "args": []
 }
 }
}

4. Reload VS Code.

Windsurf

1. Open Windsurf's MCP Plugin Store.
2. Search for VizArc or add custom server.
3. Set command path: C:\Program Files\Vizrt\Viz Arc\VizArc.McpServer.exe.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 101

OpenAI Codex CLI

codex --mcp-server "C:\Program Files\Vizrt\Viz Arc\VizArc.McpServer.exe"

Step 3: Verify Connection
After configuring your MCP client:

1. Start a new conversation.
2. Ask: "What Viz Arc tools do you have access to?".

The AI should respond with information about available Viz Arc tools.

Example Prompts

For documentation queries (Viz Arc not required)

 "Show me the available parameter types in Viz Arc"
 "How do callbacks work in Viz Arc templates?"
 "What is the difference between SetControlObject and UpdateTemplate?"

For live template work (Viz Arc must be running)

 "What template do I have open in Viz Arc?"
 "Add a text input parameter called 'headline' to my current template"
 "Show me the control objects available in my template"
 "Link the 'score' parameter to the 'ScoreText' control object"

5.10.2 Available AI Tools

Static Tools (Always Available)
These tools work without Viz Arc running:

Tool Description

get_documentation Access Viz Arc API documentation.

get_parameters_reference Get parameter types and properties reference.

get_sample_templates Show example template implementations.

Important: Use double backslashes (\\) in JSON paths for Windows.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 102

Tool Description

list_parameter_types List all available UI parameter types.

query_documentation Search documentation for specific topics.

Dynamic Tools (Require Viz Arc Running)
These tools require Viz Arc to be running and a valid AI license:

Tool Description

get_current_project Get information about the loaded project.

list_templates List all templates in the current project.

get_template Get details of a specific template.

validate_template_code Validate JavaScript or VBScript code.

create_template Create a new template and open it in Template Designer.

get_current_editing_template Get the template currently open in Template Designer.

modify_current_template Apply changes to the currently open template.

get_control_objects Get available control objects for linking.

link_parameter_to_control_object Create UI linkage between parameter and control object.

unlink_parameter Remove linkage from a parameter.

get_parameter_linkages View all current parameter linkages.

Modifying Parameters
When using modify_current_template, you can update various parameter properties:

Property Description

x, y Parameter position

width, height Parameter dimensions

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 103

Property Description

label Display label

parameterColor / backgroundColor Background color

Supported Color Formats

 Hex: #FF5500 or #AARRGGBB

 RGB function: RGB(255, 85, 0)

 Comma-separated: 255, 85, 0

 JSON object: {"R": 255, "G": 85, "B": 0}

5.10.3 Troubleshooting

AI Prompt Panel Not Visible
Cause: AI license not valid or not available.

Solution:

1. Verify AI license status in System > Configuration > Info.
2. Contact your Vizrt representative if license is missing.

MCP Server Not Connecting
Check 1: Configuration file syntax

 Ensure claude_desktop_config.json has valid JSON syntax.
 Verify double backslashes in Windows paths.

Check 2: Executable path

 Confirm VizArc.McpServer.exe exists at the specified path.
 Test by running the executable directly in a terminal.

Check 3: Restart Claude Desktop

 Fully quit Claude Desktop (check system tray icon).
 Relaunch the application.

"AI License Required" Error
Cause: Valid AI license not detected.

Solution:

1. Ensure Viz Arc is running.
2. Verify AI license in System > Configuration > Info.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 104

3. Contact your Vizrt representative for license issues.

Documentation Not Loading
Check that the documentation folder exists: %ProgramData%\Vizrt\VizArc\Resources\MCP\AI_Documentation\.

If missing, reinstall Viz Arc or contact support.

Dynamic Tools Not Working
Cause: Viz Arc application not running.

Solution:

1. Start Viz Arc.
2. Load a template in template editor.
3. Try the tool again.

Note: Static tools (documentation, parameter types) work without Viz Arc running. Dynamic tools require
Viz Arc to be running with a loaded template.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 105

5.11 Tracking

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 106

5.11.1 Tracking

 Status: Enables or disables the Tracking panel.

5.11.2 General

 Enabled Inputs: Sets the number of objects that can be tracked contemporarily.
 Viz Engine: Selects the Viz Engine, already pre-configured in the Profiles tab, that the Object Tracker uses as

source.
 Server Port: Sets the port where the Viz Object Tracker is listening.

5.11.3 SMURF Input

 Input Key: Selects (from a list) or modify the key to use to retrieve the textures for the Object Tracker.
 Sync Key: Sets Viz Engine's SHM master sync key. The default is viz_engine_SHMsync.

5.11.4 Tracking Hub

 Maximum Delay |Fields|: Texture delay set in the Engine, the delta fields between this value and the
processing time is handled by the Object Tracker.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 107

 Texture Asset: Texture to delay; this parameter is automatically filled when the Input Key is selected from
the list.

5.11.5 Performance

 GPU: Zero-based index representing GPU affinity where the Viz Object Tracker does parts of the AI
computation. This applies only to multi GPU systems. 0 represents the fist GPU, 1 the second etc.

 Overwrite Previous Tracking: Overwrites the currently selected tracker when selecting a bounding box
that is already assigned to a different tracker, if enabled.

 Cut Detection: When a hard cut is detected, all current trackers are lost.
 Batch analysis: Analyzes the image twice to detect smaller objects, adding more stress both on CPU and

GPU.

5.11.6 Appearance

 Tracked Objects Alpha: Sets the transparency of the bounding boxes of the detected objects.
 Show Tracked Objects IDs: Hides/shows the objects IDs when the detection is running, for debug purposes.
 Show Tracked Objects Scores: Hides/shows the objects scores when a detection (Detection and Tracking,

Face and Pose) is running, for debug purposes.

5.11.7 Graphics

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 108

 Pointer Offset: Enables the possibility to draw an offset to apply to the pointer.
 Keep Previous Valid Offset: Applies the the last valid offset each time you click on a new object when

active. Otherwise, the offset you draw each time is applied.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 109

5.12 Vizrt Systems
This part of the configuration groups all Vizrt related systems that connect to Viz Arc.

5.12.1 Graphic Hub REST
Viz Arc uses the Graphic Hub REST API for browsing scenes, images, merged geometries and materials.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 110

The following settings related to Graphic Hub can be configured:

 SSL: Switches between HTTP or HTTPS connection to the Graphic Hub REST.
 Host/IP: Host or IP of the Graphic Hub REST service.
 Port: Connection port to be utilized. The default port is 19398 .
 User Name & Password: Login credentials for Graphic Hub.
 Comm. Timeout: The timeout in milliseconds for a REST request.

5.12.2 Media Service
Viz Arc uses Media Service for asset browsing images and clips. Media Service can also be used to record the
Engine's output.

 Status: Enables or disables the Media Service.
 Host/IP: Host or IP where Media Service is installed.
 Port: Connection port to be utilized. The default port is 21099 .

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 111

5.12.3 Viz One

 Host/IP: Host or IP where Viz One server is installed.
 Port: Connection port to be utilized. The default port is 80 .
 User Name & Password: Login credentials for Viz One (default admin/admin).

The Viz One server can be used as source of image assets for Image Actions or as source of video clips for the Clip
Action.

5.12.4 Viz Virtual Studio
When working with tracked cameras in a Virtual Studio environment, Viz Arc communicates with Tracking
Hub or VizIO to send and receive camera tracking information.

In order to receive tracking information, you must select the correct Tracking Source. The following settings
related to Viz Virtual Studio can be configured:

 Status: Enables or disables the Virtual Studio.
 Host/IP: Host or IP of the Tracking Hub.
 Port: Connection port to be utilized. The default port for Tracking Hub is 2000.
 Feedback Port: The port on which Viz Arc listens for camera updates from the Tracking Hub.

Important! When working with Tracking Hub, you must configure a Camera Service in Viz Studio Manager
for each camera:

 Add and configure a new camera service.
 Enter IP of Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 112

 Port must match the port number specified in Feedback Port (default 4000).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 113

Configuring Rigs to Viz Engine and Viz Arc
In Tracking Hub, a parent translation rig cameraX (where X is the number of the tracked camera) must be created.
This rig must be sent to the Viz Engine. The rig below, which contains the lens information, must be sent to Viz Arc
on the port specified in Feedback Port (default 4000).

5.12.5 TCP Command Port

Tracking Hub might output some connection errors on the console when adding the Camera Service for Viz Arc. To
remove those error messages, configure the Command Port to match the configured TCP communication port
(default 9204).

5.12.6 Director
Viz Arc can be connected to Viz Pilot, which is a program used to send graphics On Air to Viz Engine.

Note: The configuration above makes it possible to move the camera on the maps section. Viz Arc sends
the camera position to the translation rig cameraX when moving the camera along the map. This kind of
setup is NOT mandatory and depends on the workflow.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 114

For more information about Viz Pilot, see the Viz Pilot User Guide.

The following settings related to Pilot Data Server can be configured in the menu below:

 Host/IP: Host or IP of Pilot Data Server.
 Port: The default port is 8177 .

It's also possible to select the Concept and the template using the edit icon:

The following must be installed in order to use the interaction with Viz Director:

 Viz Arc REST Service
 Viz Pilot Data Server

Vizrt Network Adapter
The selected Network Adapter is used to listen to feedback from the Viz Engines. This feedback is used to get
information about chroma key settings and Engine status used in the Engine Status Widget.

Note: These settings are related to Pilot Data Server, an application that acts as a server for accessing the
Director database and other services.

https://docs.vizrt.com/viz-pilot.html

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 115

 Network Adapter: The network adapter to listen on. Make sure you select the network adapter the Vizrt
network is configured on.

 Arc Feedback Port: The Port on which Viz Arc listens for UDP feedback from the Viz Engines.

Media Sequencer
Configure the Media Sequencer to use MSE actions to take/continue/take out Viz Trio pages using MSE's REST
service.

Viz Arc uses Media Sequencer (MSE) to connect to Viz Engine. Through MSE you can also retrieve saved pages in Viz
Trio using the Media Sequencer REST API and import them directly into Viz Arc for execution.

The following settings related to MSE can be configured in the menu above:

 Host/IP: Host or IP of MSE.
 Port: The default port of the MSE REST service is 8580 .
 Default Channel: The default channel to be used on the creation of a MSE action. Use the refresh button to

re-fetch a list of available output channels. The selected channel is used as default output channel when a
MSE action is created.

Viz Arena
Configure the Viz Arena server for operating Viz Arena through Viz Arc.

 Status: Enables or disables the Viz Arena integration.

https://docs.vizrt.com/viz-trio

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 116

 Host/IP: Host or IP where Viz Arena server is running.
 Port: Connection port to be utilized. The default port is 40055 .

Viz Arc REST Service
Install the Viz Arc REST service by checking the Viz Arc REST Service option in the bundle installer.

Once installed, Viz Arc REST Service, you can check if the service is running:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 117

Viz Pilot Data Server

License: The Viz Arc Web Service requires the Viz Arc REST license to be in place, otherwise the service will
not start.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 118

Open the Pilot Data Server installer and follow the instructions.

When you have finished installation, you can test if the server is up and running by entering the IP and port (default
is 8177) in the browser’s address bar. You should see this page:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 119

5.13 Third Party Systems

 Vinten Automation Server
 Tecnopoint Automation Server
 Telemetrics Automation Server
 Utah Scientific Router
 Monogram

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 120

 MIDI Device
 Stream Deck
 Art-Net DMX

5.13.1 Vinten Automation Server
Viz Arc can be connected to a Vinten Automation Server. Vinten is a supplier of manual and robotic camera support
systems.

 Status: Enables or disables the server.
 Host/IP: Host or IP of where the Vinten server is installed.
 Port: The default port is 11239 .

5.13.2 Tecnopoint Automation Server
Viz Arc can be connected to a Tecnopoint Automation Server.

 Status: Enables or disables the server.
 Host/IP: Host or IP of where the Tecopoint TuningS server is installed.
 TuningS Port: The default port is 22222 .

 Web Port: The HTTP port used to fetch thumbnail images, the default is 1234 .

5.13.3 Telemetrics Automation Server
Viz Arc can be connected to a Telemetrics Automation Server.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 121

 Status: Enables or disables the server.
 Host/IP: Host or IP of where the Telemetrics server is installed.
 Port: The default port is 5000 .

5.13.4 Utah Scientific Router
Viz Arc can connect to a Utah Scientific Video Router.

 Status: Enables or disables the router.
 Host/IP: Host or IP of where the Utah router is installed.
 Port: The default port is 5001 .

5.13.5 Monogram
Viz Arc supports monogram consoles.

 Status: Enables or disables the console.
 Port: Sets the UDP port to listen for device input.

To configure monogram to work with Viz Arc, go to Monogram Creator > Preferences and add the Viz Arc
integration.

https://monogramcc.com/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 122

A predefined integration can be found in the Viz Arc program-data folder under Resources/VizArc.monogram.

In the config.json fille, the port can be changed to something else than the 51234 default port.

config.json

{
 "name": "VizArc",
 "id": "vizrt.VizArc",
 "exe": ["VizArc.exe"],
 "connection": [
 {
 "name": "VizArcConnection",
 "type": "udp",
 "port": 51234
 }
]
}

When used with an ORBITER module, the integration can be used to control an NDI PTZ camera using the NDI
Action.

https://monogramcc.com/#modules

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 123

A sample of connected monogram modules including an ORBITER module.

5.13.6 MIDI Device
Viz Arc can use one or more attached MIDI devices to control certain UI elements.

 Status: Enables or disables the MIDI devices.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 124

When the configuration window is opened or the refresh button is pressed, Viz Arc scans for connected MIDI devices
and displays them as a list of available devices. Check Enabled if you want to use a device in Viz Arc. When checked,
the device can be used through scripting identified by the Device Name.

5.13.7 Stream Deck
The Stream Deck Devices section lists all Stream Deck devices connected to the system.

 Status: Enables or disables Stream Deck device usage.
 Device List: Lists of all currently connected devices. Use the Refresh button to refresh the list in case a

device has been connected or disconnected after starting Viz Arc. Uncheck any device you do not want to
use in Viz Arc.

5.13.8 Art-Net DMX
The Art-Net section is used to configure the listening port and interface for Art-Net DMX lighting data.

 Status: Enables or disables Art-Net listening.
 Network Adapter: The network interface to listen on for Art-Net messages.
 Port: The port to use to listen to the messages, the default port is 6454 .

See Also

 Scripting Classes for more information on how to use MIDI devices.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 125

5.14 Loupedeck Integration
The Loupedeck device integration allows a user do adjust the Viz Engine Precision Keyer using the hardware dials
and touch buttons. It also allows you to adjust the values of any transformation action allowing for quick size/
position/rotation changes of scene elements in addition to the ability to interact with the Precision Keyer action.

5.14.1 Installation
To use the Loupedeck integration, download the Loupedeck software from here. The software does not necessarily
need to be installed on the same machine as Viz Arc.

 After installation, go to the Plugins Settings menu.

https://loupedeck.com/get-started/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 126

 Click on the gearbox to open the Add-on Manager window.

 Select Install plugin from file.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 127

 Browse for the Viz Arc plug-in contained in the file VizArcLoupedeck.lplug4, which can be found in C:
\ProgramData\vizrt\VizArc\Resources\Loupedeck after Viz Arc installation.

 Wait for the installation to complete.

 Confirm the successful installation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 128

 On the main page you can now find the Viz Arc plug-in. Select it and expand the Actions folder and drag
the Viz Arc Control button to any of the free buttons in the Loupedeck device area.

Configuration
The configuration file ArcSettings.json can be found under %localappdata%
\Logi\LogiPluginService\PluginData\VizArc.

{

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 129

 "hostname": "localhost",
 "port" : 5004,
 "portREST" : 9004
}

The file contains the hostname and the port (for example, localhost:5004) of the running Viz Arc In-App Web API
and the Viz Arc REST Server, the ports can be configured under the Communication section of the settings.
Remove the port configurations or set them to 0, if the connection to either one of the services is not necessary or
desired.

Logging
The log file VizArc.log of the plug-in can be found under %localappdata%\Logi\LogiPluginService\Logs\plugin_logs.

See Also

 Using the Loupedeck

Note: A restart of the Loupedeck software is required after every change to the configuration.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 130

5.15 Stream Deck Integration
The Elgato Stream Deck plug-in allows you to trigger various Viz Arc actions and shortcuts, such as Action
Execution, Playlist control and much more.

 Installation
 Configuration

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 131

 Internal vs. External Stream Deck Control
 Usage

5.15.1 Installation
To use the Stream Deck plug-in, download the Stream Deck for Windows software from here. The software does not
necessarily need to be installed on the same machine as Viz Arc.

 Browse for the Viz Arc plug-in contained in the file com.vizrt.arc.streamDeckPlugin, which can be found in C:
\ProgramData\vizrt\VizArc\Resources\StreamDeck after the Viz Arc installation.

 Double click the file for installation. The Streamdeck application shows a prompt asking to confirm the
installation.

 After the installation, you should see under the Viz Arc section the newly available actions.

https://www.elgato.com/us/en/s/downloads

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 132

5.15.2 Configuration
To configure the Viz Arc host(s), start to drag the Execute Action to any of the free Stream Deck keys.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 133

Click on the Open Settings button, if it does not open automatically to configure your Viz Arc In-App Web API and
REST Web API endpoints.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 134

 In-App Web API: Defines the endpoint where the Viz Arc application is running (the default is http://
localhost:5004).

 REST Web API: Defines the endpoint of the Viz Arc REST Web API. It is only required when using the
Execute REST Action. The default is http://localhost:9004.

Info: These Viz Arc endpoints can be configured under the Communication settings.

http://localhost:5004.
http://localhost:9004.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 135

5.15.3 Internal vs. External Stream Deck Control
Please note that Viz Arc supports two ways on how to use a Stream Deck device.

1. Use the native integration, only available prior to version 1.9 which can be configured here.
2. Use the external integration using Elgato's Stream Deck desktop software, which is described in this section.

It is not recommended to use both integrations at the same time for a device, as there might be unexpected
behavior.

5.15.4 Usage
Read more about the usage here.

Warning: Make sure the device you want to use with the external plugin is unchecked in the configuration.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 136

5.16 Preview Studio Configuration

5.16.1 Overview
The Preview Studio feature is a powerful component of the Viz Arc Engine Service that enables users to record Viz
Engine’s live input signal from one or more Viz Engines, and camera tracking data from Viz Tracking Hub. The
recordings can be replayed later on.

This functionality creates a virtual sandbox environment where operators can test, refine, and preview their
graphics without requiring live video input or tracking hardware.

 Overview
 System Requirements

 Configuration
 Viz Engine Configuration
 Preview Viz Engine Configuration
 Viz Arc Configuration

System Requirements
Preview Studio integrates with the existing Viz Arc ecosystem, requiring:

 One or more Viz Engine(s) to record the input signal from. Viz Arc Engine Service must be installed beside
each Viz Engine instance.

 A Virtual Studio rig instance that sends data to the Viz Arc Engine Service (default port 3001).
 Sufficient storage for video and tracking data. The video and tracking data that are being recorded, are

stored according to the location specified in the appSettings.json file, found in the Viz Arc Engine Service
installation folder.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 137

 A Viz Engine instance that acts as Preview Server, on which the recordings are displayed. This is ideally a Viz
Engine configured as NDI engine on the local machine where Viz Arc is running.

5.16.2 Configuration

Viz Engine Configuration
1. Configure SMURF Input: Configure Viz Engine SMURF input option. The key can be found and changed in

the Viz Engine configuration file, by default, the key for live input1 is viz_01_live1_aux:

2. Enable SMURF Send in Scene: Sets the SHM Aux Mode to send in the scene.

3. Configure Studio Manager: Sets up a rig dedicated to the Viz Arc Engine Service. Direct it to the port
specified in appsettings.json, with the TrackingIpPort parameter (default: 3001).

Preview Viz Engine Configuration
It is recommended to use a dedicated Viz Engine used as Preview Engine, that receives the NDI playback streams.

 Enable SMURF/NDI: Configure Viz Engine to use the tracking data coming from the NDI stream instead of
Tracking Hub. The config file default location is under C:\ProgramData\vizrt\VizEngine\VizEngine-0.cfg, and
the parameter set to use_trackinghub = 3.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 138

Viz Arc Configuration
Define a Profile: In Config > Profiles, create a profile that includes all engines being recorded from, and the Viz
Engine that functions as Preview Server, by checking the Preview box.

Please note that the Engine Service Port parameter must be properly configured in order for Viz Arc to
communicate with the remote Engine Services.

When the set up is complete, the usage instructions can be found on Preview Studio.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 139

5.17 Companion Integration
The Bitfocus Companion module allows you to trigger various Viz Arc actions and shortcuts.

5.17.1 Installation
To use the Companion Module, download the Bitfocus Companion software for Windows. The software does not
necessarily need to be installed on the same machine as Viz Arc.

 Browse for the Viz Arc module contained in the file vizarc-3.0.0.tgz, which can be found in C:
\ProgramData\vizrt\VizArc\Resources\Companion after the Viz Arc installation.

 In the Bitfocus GUI, open the Modules tab and click on Import Module Package. Then import the .tgz file.

https://bitfocus.io/companion?inapp_stable

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 140

 Now open the Connections tab, and search for the Vizrt: VizArc module and add it.

 Here you can also configure In App and Rest addresses and ports.

 Now you can find in the Buttons tab the VizArc preset.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 141

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 142

6 Working with Viz Arc
This section covers the following topics:

 General Workflow
 User Interface
 4 Point Calibration
 Supported Action Types
 Builder Mode
 APIs
 Data Integration
 Integrations
 Engine Status Widget
 Graphic Hub Browser
 Import and Export
 Multizone Chroma Keying
 OCR
 On Air Mode
 Playlist
 Preview Studio
 Preview
 Precision Keyer
 Program and Preview
 Projects
 Templates

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 143

6.1 General Workflow

This section provides an overview of the general workflow in Viz Arc.

Viz Arc is based on Projects. A project defines the scene or scenes to be used in any given production as well as the
different buttons called Actions that control the desired scene properties, such as transformations or triggering
animations.

The interface has two main modes, Builder and On Air:

 Builder mode: Users are able to configure and build all the needed actions for the operation.
 On Air mode: Users can execute and manage existing actions, but have limited functionality on creating new

ones.

Creating and working with projects is simple, just follow the steps below.

 Add a scene to a project to start creating actions that control your scene.
 Actions can be created by dragging and dropping the property you wish to control such as Transformation,

Text, Alpha, etc. from the Control Channels, Tree or Directors sections to the Actions Panel. For more details,
see create actions and supported action types.

 Optionally Configure the different tracked cameras, zero point and transformation properties of the
different elements within your Virtual Studio or Augmented Reality elements by importing an AutoCAD
(.dxf). For outdoor productions, configure directly over a map in the Set section of the interface.

 Go On Air and initialize your project to load all the imported scenes into the selected Channels and start
executing your actions.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 144

Note: Viz Arc also lets you write your own custom Scripts.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 145

6.2 User Interface
The Viz Arc user interface is divided into the following main sections:

 Builder Mode
 Actions
 Set
 Script

 On Air Mode
 Top Tool Bar
 Status Bar

6.2.1 Builder Mode

The Operations Toolbar is at the top right corner When working in Builder mode, you can configure and build all
the actions required for On Air operation.

In builder mode, three main views contain tools for creating Projects:

 Actions
 Set
 Script

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 146

Actions

This is the part of the UI where most of the work is done when creating Projects.
The panel contains all the tools required to:

 Import one or more scenes to be controlled by Viz Arc.
 Create actions to control properties such as position, rotation, scaling, modifying text, trigger animations,

etc. of the different scene elements.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 147

Set

One of the key features of Viz Arc is the ability to configure all your virtual studio and augmented reality elements'
positions in relation to your physical environment and tracked cameras. For indoor productions, you can import an
AutoCAD project (.dxf) to set up the different elements or work over a map when outdoors.

The panel contains all the tools required to:

 Position, Scale and Rotate elements to fit your physical environment.
 Set the position of your zero point.
 Setup tracked cameras.
 Create chroma key polygons.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 148

Script

Viz Arc includes a built-in scripting engine for connecting to a database or granting additional control to operators.
Custom scripts can be written from this section of the interface. Scripts can include form elements such as text
boxes, buttons, etc. that are available to users from the Actions panel or when working in On Air mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 149

6.2.2 On Air Mode

This part of the interface is where operators work with previously created Viz Arc Projects. On Air mode provides a
simple UI where operators can focus on controlling the live show to execute and manage existing actions. When
working in On Air mode, users have limited functionality for creating new actions.

6.2.3 Top Tool Bar

Located at the top of the main window, the File Menu is composed of:

Note: On Air users can edit, execute, delete and duplicate existing actions or add general project actions
such as groups, etc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 150

Main Menu and Project Toolbar (File, View, Viz, System)

Project Tools (New, Open, Save, ..)

Scenes Toolbar section (Initialize, Cleanup),

Operations Toolbar section (Config, Builder, On-Air).

6.2.4 Status Bar

Located at the bottom of the main window, the status section is composed of:

Profiles and Channels section (left)

 Connection Status for Channels of the selected Profile

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 151

Connections section (right)

 Log list
 Connection status for

 Tracking Hub
 Graphic Hub
 Vinten
 Director
 MSE
 GPI Board

 Compilation Status of Project Script

See Also

 Supported Action Types

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 152

6.2.5 Main Menu and Project Toolbar
The Main menu contains the following sections:

 File
 Projects
 View
 Web View
 Viz
 System

File
All Project creation and management related actions are found in this menu.

 New (CTRL + N): Creates a new blank project.
 Open (CTRL + O): Opens existing project.
 Save (CTRL + S): Saves the current project.
 Save As (CTRL + SHIFT + S): Saves project with a different name.
 Import: Imports a Viz Arc archive (.arc file).
 Export: Exports a Viz Arc archive (.arc file).

Projects
Projects can be located on the local file system or on Graphic Hub. When opening a project you can choose where to
load it from, selecting from either the Graphic Hub tab and the Local tree view item.

You can organize your projects in folders only on the Graphic Hub.

Note: The same operations are also available from the Project toolbar:

Note: Local storage does not allow the creation of subfolders.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 153

When saving a project, you can choose whether to store it locally or on Graphic Hub by selecting the respective tree
node. On the bottom part of the window the Save Path indicates where the project will be stored when clicking
Save As. The prefixes gh: or local: indicate whether the project is stored on the Graphic Hub or on the local file
system.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 154

View
This menu lets you switch between the four main views when working in Builder mode. Depending on the
configuration, the Tracking and Arena panels may be available as well. The Multizone Keyer and Precision Keyer
views are available when such actions are present in the current project.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 155

 Actions: Switches to the Actions view in the main window.
 Set: Switches to the Set view in the main window.
 Script: Switches to the Script view in the main window.
 Template Design: Switches to the Template Design view to create or edit templates.
 Tracking: Switches to a dedicated view for the Object Tracker.
 Arena: Switches to a view for Viz Arena integration.
 Multizone Keyer: Switches to a view where the Multizone Keyer can be operated more efficiently.
 Precision Keyer: Switches to a dedicated view showing all Precision Keyer actions within the project.

You can also switch between views using this toolbar:

Web View
The web view sub-menu opens the respective view in a web browser.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 156

When selecting Actions, a browser opens http://localhost:5004/. From there you can trigger actions or use
embedded templates. You cannot modify any actions through the web view, nor can you load different projects.

When selecting DataMap or by clicking on the wheel in the action web UI opens the DataMap editor. From here,
you can manually modify, delete or create DataMap key/value pairs.

http://localhost:5004/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 157

Viz
This menu contains actions relating to Viz systems.

 Launch Viz Engine: Launches Viz Engine.
 Launch Viz Artist: Launches Viz Artist (if licensed).
 Maximize Viz Artist: Switches to the Viz Artist window.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 158

System

 Configuration: Opens the configuration section in a new window.
 Help: Opens the present manual.

Note: The configuration panel can also be opened by clicking at the top right.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 159

6.2.6 Operations Toolbar
This page explains the functionality of the different actions available in the Operations Toolbar.

 CONFIGURATION: Opens the configuration window.
 BUILDER: Switches to the project editing mode.
 ON-AIR: Switches to the Live section, where some actions are limited to the live show.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 160

6.2.7 Scenes Toolbar
This section describes actions in the Scenes Toolbar.

 INITIALIZE: Loads all scenes included in the open project to the configured channels and executes all groups
tagged with the Execute on Initialize toggle.

 CLEANUP: Unloads any loaded scenes, images, etc. from all engines defined in all channels from the
selected profile.

The screenshot above shows a group that is executed with the initialize button, since its Execute on Initialize toggle
is active.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 161

6.2.8 Import
Select File > Import to make the window below appear:

To open the selection dialog window, press the big folder icon.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 162

After selecting the file, you can proceed with the import steps.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 163

Select the elements to import (Projects, Profiles, Config or Keybinds) and click Next.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 164

Select the file you wish to import.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 165

If the file already exists, you can skip the import process, rename the file or overwrite the file.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 166

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 167

6.2.9 Export
Select File > Export to make the window below appear. Select which kind of file you want to export -
 Projects, Profiles, Config or Keybind and click Next.

Select the file you wish to export.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 168

Select the file destination by clicking the search icon. A dialog appears. Click Next.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 169

Click the Finish button to complete the export action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 170

6.2.10 Builder Mode Panel
 Scenes
 Templates

 Context Menus
 Individual Template
 Folder

 Moving a Template
 Projects

 Context Menus
 Project
 Project Folders

 Moving a Project

When in builder mode, the Scenes/Template/Projects panel visualizes:

 SCENES: Shows the scenes associated with the current project.
 TEMPLATE: Gives access to all the templates stored on the Graphic Hub.
 PROJECT: Gives quick access to all projects available to the user.

Scenes
Please refer to Scenes Panel.

Templates
The template tab shows all templates available on the connected Graphic Hub.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 171

The logo indicates what kind of template it is (Vizrt, Unreal, Flowics or Independent). The date and time indicates
the last modification time/date of the template. Templates can be searched for using the search bar and they can
be ordered ascending or descending by date or name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 172

Context Menus

Individual Template

The context menu on a individual template offers the following options:

 Open in Editor: Opens the template in the Template Designer for editing.
 Rename: Renames the template.
 Delete: Deletes a template.

Folder

The context menu on a folder:

 Rename Folder: Renames the selected folder.
 Create Folder: Creates a new folder under the selected folder.
 Delete Folder: Deletes the entire folder and its children.

 Refresh Folder Subtree: Forces a refresh from the connected Graphic Hub of the selected folder and its
content.

Moving a Template
Use drag and drop to move a template across folders:

Warning: Please note that the deletion cannot be undone.

Warning: Please note that the deletion cannot be undone.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 173

Once dropped a confirmation window asks for confirmation of the move:

Projects
The Projects tab gives you an overview and quick access to all available projects.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 174

The projects are divided into two main groups, the Local projects (which are stored on the local file system
containing a flat hierarchy) and the Graphic Hub (that has the advantage of being accessible from multiple locations
and allowing to create folders and subfolders for clear logical separation of the projects). As for the templates,
projects can be searched for using the search bar and they can be ordered ascending or descending by date or
name.

Double click to load a project directly.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 175

Context Menus

Project

The context menu on the project:

 Rename: Renames the selected project.
 Delete: Deletes the selected project.

Project Folders

The context menu on project folders:

 Rename: Rename the selected folder.
 Create Folder: Create e new folder under the selected folder.
 Delete: Delete the entire folder and its children.

 Refresh Folder Subtree: Forces a refresh from the connected Graphic Hub of the selected folder and its
content.

Moving a Project
Use drag and drop to move a project across folders:

Warning: Please note that the deletion cannot be undone.

Warning: Please note that the deletion cannot be undone.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 176

Once dropped a confirmation window asks for confirmation of the move:

Note: You cannot undo the removal of templates or projects. It is strongly recommended to take backups
before removal operations. Either use Viz Arc’s export wizard to backup templates and/or projects or use
other means of backing up the Graphic Hub or the local file system containing the Viz Arc projects.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 177

6.3 4 Point Calibration

6.3.1 About 4 Point Calibration
4 Point Calibration can be used to calculate the position and orientation of a (typically mechanically) tracked
camera. Using this type of calibration requires knowledge of at least four physical points in the domain (for
example, the corners of a soccer pitch or well-known points on a horse race track).

Map View showing a soccer pitch and four calibration points.

6.3.2 Prerequisites
 The calibration points must all be on the XZ plane (same height).
 The camera must be on a fixed position and can't be moved in space.
 At least four points need to be measured/known on the tracking domain.
 The points must define a surface and not just a one dimensional line.
 Make sure the tracking hub sends the tracking information to Viz Arc and make sure it includes the camera

lens rig containing a valid calibration.

Note: Do NOT use a parent transformation rig on top for 4 Point calibration. The translation and rotation
will be handled inside the root node of the Viz Artist scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 178

6.3.3 To Add Calibration Points
Add calibration points from the map's context menu:

Select the calibration point you just added and move it on the map, or enter its coordinates manually:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 179

Once all calibration points have been added and positioned, the actual calibration process may start.

6.3.4 Calibration
Select the camera to be calibrated.

1. On the camera user interface select the marker towards which you want to point the camera. The calibration
point is colored yellow on the map canvas.

2. The physical camera should now fully zoom into the marker and try to center it as best as possible.
3. Once the marker is centered, click the Set button. If your preview has been set up so that the camera is

visible and you have a valid lens calibration, you can also click the position in the view instead of using
the Set button.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 180

4. Continue this procedure for all or at least four calibration points.

6.3.5 Applying Calibration
1. Once at least 4 points have been set, click the Calculate! button to calculate the presumed position and

orientation of the camera. You can choose between Method 1 and Method 2, hit Calculate! after switching
algorithm. Generally Method 2 is more accurate but needs more and more accurate calibration points. Try
both and pick the one that gives you better visual results.

2. Under the Global Transformation dropdown, select the transformation action holding the world
transformation of the main scene (typically the root node of the AR/VR scene).

3. Click Apply to apply the calculated transformation and rotation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 181

Use the R button to refresh the list of available transformation actions.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 182

Typically the transformation to be used is the root node of the scene.

Once calibrated you should be able to position AR graphics on your pitch.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 183

6.4 Supported Action Types
 Vizrt Scene Actions and Unreal Actions are created by dragging and dropping properties from scenes or level

tree containers, such as geometry plugin (position, rotation, scaling), hide object action, or from a tree
directly into the actions area.

 Project Actions are created by right-clicking on the actions canvas.
 Other Actions are created by right-clicking on an empty space in the main area.

Vizrt Scene
Actions

Unreal Actions Project Actions Other Actions

Alpha Active Action Group Flowics Playlist

ControlChannel Animation Chroma Key Multizone Chroma Key

ControlObjects Blueprint Command NDI

Director Command MSE Scene Loader

Geometry Dispatcher Shared Memory Tecnopoint Control

Image Mesh Tracking Hub Telemetric Control

Key Position/Rotation/
Scaling

Virtual Studio Utah Router

Material Sequence Viz Camera Vinten Control

Omo Text

PBR Material Light

Phong Presets

Script Rundown

Text

Transformation

Viewport

Visibility

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 184

6.4.1 Project Action Types

 Action Group (1)
 Command (2)
 Tracking Hub (3)
 MSE (4)
 Shared Memory (5)
 Chroma Key (6)
 Virtual Studio (7)
 Viz Camera (8)

Action Group

Action Group is useful for grouping several actions together, both scene and project, and executing them at the
same time.
It’s possible to collapse a group or expand it and insert/edit/remove action children.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 185

Pressing the Edit icon next to the group name opens the main tool, where you can edit the group name, box
color, time delay in milliseconds, keyboard shortcut and GPI channel.

It’s also possible to execute all action boxes included in an action group on initialize group by pressing the Execute
All icon at the top-right of the group box.

Remove all actions from the group by selecting Take All Actions Out in the Context Menu (right-click on group
action).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 186

Command

The Command action lets you write custom commands to talk with Viz Engines, for example to manage stage
animations or start a specific director, as shown in the example above.

Tracking Hub
TH Command lets you write a custom command to interact with Tracking Hub.

Note: Tracking Hub is a console program for Viz Virtual Studio that collects and stores data from tracking
systems (cameras and objects). Viz Engine is provided with this tracking data at a configurable time or
delay.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 187

MSE

MSE lets you retrieve Viz Trio’s saved pages and import them directly into Viz Arc for execution.

The profile used for the action is in the lower left corner of the MSE action. It contains a list of the profiles configured
on your MSE.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 188

To Import Trio Pages
This section shows you how to import Trio Saved Pages into Viz Arc:

Press the MSE icon to make a window
containing a list of Trio shows appear.

Select a show. A list of Trio pages is displayed.

You can sort pages by page number, description and
template by double-clicking on the header at the top
of the list.

Reload MSE pages by clicking Refresh.

To import, select one or more pages and click Add
Selected to add them in the actions area.

To abort an operation, close the window or press
the Close button.

At the bottom of the MSE window, you can
select Take, Continue, or Take Out, which creates a
single action box for every operation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 189

To Work with Page Animations

Once the pages are imported as MSE Actions, you can work with Page animations:

TAKE: start animation.

CONTINUE: continue animation from the previous stop point to the next.

TAKE OUT: take out the graphic.

Execute: perform the action selected above.

Pilot Data Server Elements
In addition to Viz Trio Pages, you can also create actions linked to Pilot Data Elements stored in the Pilot Data
Server (PDS). To get there you need to either select the PDS ELELEMENT button on an existing action or select the
PDS ELEMENTS tab when creating a new MSE Action

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 190

From there you can navigate all available Concepts and navigate down to all available Data Elements under each
Template

Note: The PDS Server needs to be properly configured in the Director section under the Vizrt Systems
configuration section.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 191

Click on the Load XML button to visualize the actual raw Payload. This is just for information and cannot be
manipulated. Click the Add Selected button to create the MSE Actions or double click the Data Elements to add it to
the action canvas.

The resulting action looks like this:

The Pilot action has an additional dropdown menu containing the available MSE Channels. The channels can be
configured in Director:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 192

Shared Memory

Note: You can only trigger Viz Trio or Viz Pilot elements from Viz Arc. You cannot modify its content
payload.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 193

Set Shared Memory names and assign a value using Shared Memory. You can add multiple Shared Memory key/
value pairs.

The value pairs can be sent to different shared memory destinations:

 COMMUNICATION: The VizCommunication map of the destination Engines is updated. Only the Engine's
selected profile is updated.

 SYSTEM: The System map of the destination Engines is updated. Only the Engine's selected profile is
updated.

 DISTRIBUTED: The VizCommunication map of the destination Engines is updated and all Engines connected
with the same user to the Graphic Hub are updated as well.

The action works only when the destination Engine(s) have either UDP or TCP ports configured for shared memory
updates. It uses the UDP port if configured other than 0 , else it uses the TCP if configured other than 0 .

The Viz Engine configuration, configured to receive shared memory updates via UDP on port 3004 or via TCP on

port 3003 .

Precision Keyer

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 194

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 195

Setting up the Precision Keyer is a sequential process where each step creates an interim result. The suggested
layout follows the sequence and places the show buttons next to the items which need to be inspected. The
buttons shown are check boxes and can be overwritten if another checkbox is selected. If no checkbox is active, the
final composition is shown.

No checkbox Shows the final and composed output of the Keyer.

Trash Matte Shows the color coded trash matte on the output.

Matte Shows the key output, white representing foreground and black the
background.

Matte Inverse Shows the inverse of the Matte output, foreground white, background black.

Advanced
(Primary
Matte)

Inks threshold values to ease setup when it is hard to distinguish between 0.9
and 1.0 (both appear "white" on monitors).

Value 0.0 is mapped to green and 1.0 to red.

Denoise Shows the output of the de-noising step.

Processed Shows the processed output.

Advanced
(Processed
Foreground)

Inks threshold values to ease setup when it is hard to distinguish between 0.9
and 1.0 (both appear "white" on monitors).

Value 0.0 (fully processed) is mapped to red.

Spill Shows the spill matte.

Edges Shows the detected edges between foreground and background.

Highlights Shows the highlights in the foreground.

Primary Matte

 Hue: Rotate the color space to move the color of the Cyclorama to the purest color chosen, green or
blue. You can adjust this by looking at the matte and checking that the matte calculated on the Cyclorama
approaches black.

 Saturation: If the video is not highly saturated you may want to adjust this to ease setting of the opacity and
transparency point.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 196

 Opacity: This is the point at which the primary matte value becomes 100% opaque. Equivalent to the black
point on gray scale images.

 Transparency: This is the point at the which the primary matte becomes 100% transparent. Equivalent to
the white point in gray scale images.

Matte Denoise

 Radius: The radius of the bi-linear filter used to blur the noisy parts of the image.
 Sharpen: Pixels whose color differ more than this threshold from the main pixel are not included in the

blurring process. This maintains detail, even if a large blur radius is applied.

Processed Foreground

 Process Foreground: Enables or disables the foreground processing. When disabled, it falls back to a classic
alpha blending.

 Gain: Sets gain for the processed foreground color.
 RGB: Uses this backing plate color to process the foreground. This value gets subtracted from the

foreground color, and the result should be black.
 Black Point: Scales the key value used when processing the foreground. Only affects areas where matte is >

0.0 and < 1.0. Can be used to enlarge the talent in semi-transparent regions, increases lightness around
edges.

 White Point: Scales the key used when processing the foreground. Only affects areas where matte is > 0.0
and < 1.0. Can be used to shrink the talent in semi-transparent regions, decreases lightness around edges.

The Black Point can be used to enlarge talent, the White Point to shrink it. It only affects foreground processing and
transition regions. Shrunken talent introduces darkened edges, enlarged talent enlightens edges.

How to setup RGB values manually:
 Enabled Advanced mode, it highlights areas which are fully processed in RED (when processed -

color is less than 0).
 Turn all values to 1.0, background should be fully red now, increase gain if it's not.
 Tune in B: Reduce value until the red areas start to vanish. Go back a little bit.
 Tune in G: Reduce value until the red areas start to vanish. Go back a little bit.
 Tune in R: Reduce value until the red areas start to vanish. Go back a little bit.
 Switch back to normal mode.
 Check result around edges, fine tune as necessary.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 197

Despill

 CMY: Cyan, Magenta and Yellow despill gain.
 Restoration Version: Restores more lightness during despilling when LIGHT is selected.

Lightwrap

 Lightwrap: Enables or disables lightwrapping.
 Edge Blur: If this value is greater than zero, edge detection is performed and edges found are blurred by the

amount set in this field. The blurred edges serve as input to brighten up the edges to overcome overshooting
when going from a dark color to the Cyclorama. These edges are used for lightwrapping.

 Edge Blur Factor: Determines how much of the background blur is used for the edge lightwrapping. 1.0 =
same blur as for spill lightwrapping, 0.0 = use unblurred background.

 Kernel: Choose between LAPLACE and SOBEL. LAPLACE is more fine-grained and keeps more details.
 Blur: The blurred background is used for lightwrapping onto the foreground together with the spill matte or

the edge matte. See also Edge Blur Factor.
 Edge Gain - Background: Defines how strongly the lightwrap is applied to the background when using the

edge matte.
 Spill Gain - Background: Defines how strongly the lightwrap is applied to the background when using the

spill matte.
 Solid Color RGB: A constant color that is applied as a lightwrap on the foreground.
 Edge Gain - Solid Color RGB: Defines how strongly the lightwrap is applied to the foreground when using

the edge matte.
 Spill Gain - Solid Color RGB: Defines how strongly the lightwrap is applied to the foreground when using the

spill matte.

Light wrapping: Light wrapping is a compositing technique designed to blend keyed out green screen
footage with a background plate. Light wrapping is used to simulate ambient light that casts light onto
your subject in the scene. Although in some circumstances (like mixed lighting) it can be better to use a
different layer than your background layer for the light wrap, this all depends on your scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 198

Shadows

 Enabled: Toggles background shadows.
 Inner: Sets threshold under which shadows or dark colors are brought to the background. This feature is

disabled if the value is zero.
 Gain: Strengthens the effect of bringing dark colors back.

Highlights

 Enabled: Toggles foreground highlights.
 Inner: Luminescence from which highlights are added to the background.
 Gain: Highlight gain.

Color Correction
Primary color correction is applied on the already keyed foreground pixels.

Spill: Carefully use Spill Gain - Background to create an ambient light effect, and increase Edge Gain -
Background to improve edge quality. Blur level should be high to prevent transparency effects when using
Spill Gain, while Edge Blur Factor can be low to reduce blur used for edge lightwrapping.

Edge Matte: Edge detection is performed on the primary matte, resulting in a grayscale image that in most
cases needs to be blurred for a smoother transition.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 199

 Saturation: Values for the overall saturation.
 Contrast: Values for the overall contrast.
 Exposure: Values for the overall exposure.
 Lift: RGB values for lift.
 Gamma: RGB values for gamma.
 Gain: RGB values for gain.

Presets
Presets can be used to store and recall different presets within the chroma action. Its main purpose is to be able to
quickly switch between stored presets and experiment with some settings while being able to quickly undo the
changes recalling a stored preset.

Create a new preset by clicking the New Preset button. It can be renamed using the Rename... context menu entry.
When a new preset is created the current chroma keying values are stored. After changing some values use the save
icon to overwrite the respective preset.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 200

Recall a preset by double clicking the preset entry or by clicking the load icon. Delete a preset using the trash icon
or by selecting the Delete... context menu.

Video Input
Select the asset source to apply the keying on. Toggle the Unreal button to specify that keying takes place in the
Unreal Engine.

Screen Color
Select between GREEN and BLUE screen color, or EXT in order use key and processed foreground from external
input, skips internal matte calculation and despiller.

Auto Adjust
For an initial keying setup, point the camera into the green/blue box and hit the Auto Adjust button to get an initial
key.

Picking
Picking lets you get a good first estimate of your Chroma/Precision Keyer. Press the Picking button to enter picking
mode:

An attempt is automatically made to fetch a still frame from Viz Engine configured in the current channel selected in
the chroma action.

You'll now be able to scroll horizontally and vertically within the snapshot and pick an area of green. The picking
area can be resized using the mouse wheel.

Note: The save buttons in the preset stores the preset within the Precision Keyer action. To store them
permanently on disk, save the entire project on the local file system or the Graphic Hub.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 201

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 202

Once an area is picked, the calculated RGB values are displayed above the snapshot. The HUE value is only relevant
if the Precision Keyer is selected. The picked values are directly applied to the Engine if Update On-Edit is enabled.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 203

You can use the Fit and Scroll to view the snapshot either scaled into the view or in it's original size for more
accurate picking.

To fetch a new still frame from Viz Engine for picking, press Update Still.

 The Fetch button retrieves the current keying settings from the Viz Engine. This is useful when creating a
new Chroma Action that needs to be initialized with the current settings of Viz Engine.

 FREEZE freezes the selected video input on the Engine. Don't forget to unfreeze when you are finished
adjusting the key.

 SHOW KEY forces the Viz Engine to output the key channel on the fill output. Deselect this when you are
finished adjusting the key.

Adjusting the Keyer
To get to a good keying result, the following steps should be followed in the described order, since the different
steps depend on each other.

 Start by hitting the Auto Adjust key button in the Keyer control. This sets the values of the hue and
saturation and ensures that the rest of the keying parameters are set to a value to optimize their influence
on previous settings.

 The obtained result after hitting the Auto Adjust key button is the primary matte which results from the
difference between the pixel colors and the primary color. The ideal hue can be found by viewing the matte
and rotating the hue until the key strength is at a maximum. The brightness of the key represents the
strength of the key. The saturation can be used to increase the key strength in case the signal coming from
the camera is not very saturated. To adjust the limits for transparency and opacity the user can switch
between the key and inverse key view. Clicking on the same button again disables the view.

 Denoising can be viewed either on the key signal or on the denoised frame which is used to calculate the
key. A large radius has a performance cost. Denoising should eliminate the noise on homogenous areas,
while keeping details like hair intact.

 The processed foreground is the next step. The background should be replaced by solid black. When
reducing the gain, the user can check if too much or not enough red or blue is still in the processed
foreground. Subtracting the wrong color results in red or blue tint in areas with semi-transparent key.

 Despilling serves two purposes: It removes the green or blue spill from the people and objects in the studio
and generates a matte which can be used for light wrapping with either a solid color or blurred background.
The shadows and highlights sections allow to bring back dark and bright colors. This happens after the
processed foreground has been applied to the background. This should be done after adjusting the primary
key and processed foreground.

 Lightwrapping helps to blend foreground and background better and should be the last step in the process
of keying/compositing.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 204

 A color correction can be applied to the processed foreground. It has no effect on any of the keying and
blending methods.

Precision Keyer Stages

The final composited output after Auto Adjust has been pressed is shown above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 205

Output of the matte only, black representing foreground and white background, is shown above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 206

Output of the inverse matte only, black representing background and white the foreground, is shown above; helpful
for seeing details such as hair.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 207

Output showing the detected and blurred edge is shown above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 208

Output of the processed foreground that also shows the light wrap around the talent is shown above.

Unreal Command
The Unreal Command action lets you write custom commands to talk to the Unreal Engine, for example to trigger a
sequence. Multiple commands can be sent separating them by ; and a newline.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 209

Native Unreal commands are also allowed such as for example:

 disableallscreenmessages: Disables all screen messages.
 enableallscreenmessages: Enables all screen messages.
 scalability 2: Sets the render quality to High.
 stat FPS: Shows some FPS information on screen.
 stat unit: Shows some useful performance information on screen.
 r.ScreenPercentage 50: Sets the Screen Percentage scaling resolution to 50.
 sg.ShadowQuality 0: Reduces the Shadow Quality to 0.

https://docs.unrealengine.com/5.2/en-US/screen-percentage-with-temporal-upscale-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/scalability-reference-for-unreal-engine/#shadows-sg.shadowquality

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 210

Virtual Studio

Virtual Studio lets you set up X/Y/Z positions and Y rotations of every scene listed at the left of the panel. When Send
Position is unchecked, it only sends the scene index to be selected on the Engine(s) and uses the position and
rotation stored in the current scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 211

Viz Camera

In Viz Camera, you can select between every camera in Viz Engine (from 1 – main to 16). The default behavior once a
Camera Action is created is to switch the active camera.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 212

If the toggle Editor/Remote is activated you can force a camera to be in Remote or in Editor mode, for example.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 213

When Editor mode is selected, you can enable all aspects of the camera such as Angle, Position and Direction and
force the displayed values.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 214

6.4.2 Scene Action Types
Import from a scene/stage tree and edit parameters of these supported types:

 Alpha
 Control Channel
 Control Objects
 ControlObjects in Unreal Engine
 Director
 Geometry
 To Import a Geometry
 Light
 Material
 Image
 Key
 Omo
 PBR Material
 Phong
 Script
 Text
 Transformation
 To Create a Linked Action
 Viewport
 Visibility

Alpha

Alpha lets you set the opacity to the referred object, from 0.0 (not visible) to 100.0 (fully visible).

Control Channel
Control Channel lets you control basic Control Channel types such as floats, integers, and Boolean values. This can
be particularly handy in conjunction with the Viz Engine 4 Render Graph.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 215

To create a Control Channel action, drag and drop a Control Channel to the action canvas:

If more than one parameter needs to be controlled by the same action, edit the action and drag more parameters
into the designated area:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 216

or use the ADD button to select from a list of available Control Channels to be added:

To remove Control Channels from the action, click the Expand button and use the context menu to delete single
Control Channels in the newly opened window:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 217

Control Objects
Control Object actions can be used by dragging a Control Object plug-in from the scene tree into the action canvas.
It gives you a list of the Control Objects under the respective tree structure.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 218

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 219

Expand the controls clicking the Expand button for a better overview and to enable deletion of single or multiple
Control Objects. Select all the controls that shall not be set by this action, then select Delete from the context
menu.

Use the Refresh button to update the list from the associated scene, in case the scene has been modified after the
action's creation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 220

In some cases you might want to send only a subset of the entire Payload. Use the Enabled toggle flag for each
Control Object to enable or disable setting the specific property on the Viz Engine. It behaves similar to the delete
option described above, but in this case you can re-enable the disabled Control Object easily.

ControlObjects in Unreal Engine
The Viz Engine's Control Object integration allows you to control aspects of the Unreal scene using Control
Objects. Viz Engine's Control Objects can be used to ingest images from the Graphic Hub to the Unreal Engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 221

Control Objects can be refreshed within the Viz Engine by using the Refresh UE Control Objects fetching the
exposed controls of the currently loaded Unreal Level.

Director
Director lets you handle stage animation of a specific stage director or ALL stages.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 222

It’s possible to:

START an animation.

STOP an animated director.

CONTINUE an animation to the next step.

START in REVERSE mode.

CONTINUE in REVERSE mode.

PLAY FROM a specific KEYFRAME.

PLAY FROM a specific keyframe in REVERSE mode.

PLAY an animation FROM a specific KEYFRAME TO another.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 223

SET an absolute time in seconds and jump (GO TO) tag/stop points.

This menu lets you set the Stop/Tag for
PLAY FROM, PLAY FROM REVERSE and GO TO options, and the
Frame Time for the CUSTOM option.

This menu lets you set the From stop/Tag and To Stop/Tag for
playout of an animation for the FROM TO option.

The Director Action shows the number of stop points when a specific director is selected (for example, not the
<STAGE>). When the action is selected, a progress bar on top alongside with the currently reached stop point (for
example, 2/3) is visualized. The number of stop points is read on the creation of the action and when the action is
explicitly refreshed.

Geometry
Use this menu to set an OBJ or SCENE element in a specified container.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 224

Clicking Select Geometry or Scene makes all
GH trees appear in a new window, where you
can select a new GEOM.

Selecting OBJECT makes the relevant thumbnail
appear in the action box.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 225

It’s also possible to select a SCENE instead of
GEOM. Once the scene is loaded in the geom
plugin, a separate edit section appears where
it's possible to handle control object (if
applicable) of the selected scene.

To Import a Geometry
In Viz Arc, it's possible to import objectified scenes (GEOM) into another scene through the GEOMETRY element.
Once the selected object is imported in the right GEOM, it's possible to load, update, refresh and continue. A step-
by-step example of importing and playing an objectified scene follows below:

Load a main scene that contains at least one GEOM element.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 226

Drag the GEOM element into the main area.

Press Edit and select the scene.

Once you select the scene, a list of control objects appears (if
applicable). You can enable the RESET STAGE option to have
the scene placed on the 0.0 frame in the stage.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 227

You can edit every control object listed in the scene.

You can use the icon to open a popup window that
contains a detailed list of control objects, where you can
modify each field by clicking it.

Once you have created your action box, you can duplicate it by pressing CTRL +D and assign a different action
(LOAD, UPDATE, RESET, CONT) to each box. Follow the steps below to play the GEOM scene in the main scene:

This command loads the scene/object in geom.

If is enabled, the scene/object is loaded with
all its stage animation set to frame 0.

If is disabled, it works like a Take command,
loads and start stage.

This command updates all changed control objects On Air.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 228

This command initializes the stage (frame 0.0).

This command plays the scene. If the scene has multiple
animation steps, you can continue the animation by clicking it
multiple times.

For LOAD, RESET and CONTINUE, you can choose a specific director instead of the full

stage.

Light
The light action works together with Viz Engine V4 lights. All light types are supported (directional, area, spot,
point).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 229

The Position and Orientation settings can be optionally set and act on the container transformation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 230

Material
The Material menu lets you set the material of an element and its Shininess and Alpha. Set a unique color or set
every color to Ambient, Diffuse, Specular, Emission lighting by enabling/disabling the E button next to the lighting
tabs.

 Ambient: Determines the color that the object reflects when illuminated by a natural ambient light.
 Diffuse: Determines the real color of the object, revealed when the object is illuminated by a neutral light.
 Specular: Determines the color that the object has when the light meets the object surface and reflects in

the camera.
 Emissive: Determines the self-illumination color.

You can import an existing material in GH (Graphic Hub) by pressing the Load from GH button.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 231

Image
Image lets you select an image, both from GH tree and external explorer files, and set basic transformation
parameters like Position, Rotation, and Scaling of the image texture.

Once in edit mode, click image to browse the database and
select an image from Graphic Hub.

Once in edit mode, click the folder icon at the bottom of
the image box to browse the file system and select an image
from your PC or device.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 232

To see the image path, hover your cursor over it.

With a properly configured Viz One or Viz Media Service, assets can be picked from those sources in addition to local
files or Graphic Hub. It is possible to search for assets within Viz One using the search box.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 233

Key

Use the Key menu to handle Key options for a container:

Draw RGB

Draw Key

Combine with BG Chroma Key – combines the alpha of the container with the
alpha of the background before blending the foreground with the background.

Depth Info Only – depth only for occlusion rendering with Live Video.

Active - shows if the Key plugin is active or inactive. Typically used in a green
screen scenario to determine whether an object should appear in front of or
behind the talent.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 234

Omo
Use this menu to adjust the Omo plug-in settings:

This plug-in displays all sub-containers, either one at a time or by keeping the previous container visible until the
selected container appears (by enabling the Show until parameter). The Visible Container parameter determines
which sub-container is displayed.

PBR Material
The PBR Material action works together with Viz Engine V4 materials.

Note: For more on the Viz Omo Plug-in, see the Viz Artist User Guide.

http://docs.vizrt.com/viz-artist-guide/4.2/Viz_Artist_User_Guide.html

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 235

The action offers a subset of Viz Artist's PBR settings, exposing only the most prominent features, such as all
textures and colors defining the PBR material.

Enable the Set Textures Only checkbox to send texture information only, use the respective checkboxes on the
various attributes to send to enable or disable them.

Use drag and drop from any image assets to copy and paste a texture asset to another slot.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 236

When the GH Mode is selected, you can browse Graphic Hub for PBR materials and load them through this action.

The action can be executed in two modes: Pre-Load or Load. Pre-Load preloads all the images present in the
action on the Engine. Load effectively loads the PBR Material onto the Engine. Typically, you group all Pre-Load
actions and execute them on Initialization, then trigger only the Load actions. Right clicking the action execute
button always sends Pre-Load commands.

The screenshot above shows two PBR actions in an initialization group as pre-loading and the same actions on the
right for loading.

Phong
The Phong Material action works together with Viz Engine 4.3 and newer.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 237

The action offers a subset of Viz Artist's Phong material settings, exposing only the most prominent features, such
as all textures and colors defining the Phong material.

When GH Mode is selected, you can browse Graphic Hub for Phong materials and load them through this action.

Analog to the PBR Material, the action can be executed in two modes: Pre-Load or Load. Pre-Load preloads all the
images present in the action on the Engine. Load effectively loads the Phong Material onto Viz Engine. Typically,
you group all Pre-Load actions and execute them on Initialization, then trigger only the Load actions. Right clicking
the action execute button always sends Pre-Load commands.

Enable the Set Textures Only checkbox to send texture information only, use the respective checkboxes on the
various attributes to send to enable or disable them.

Use drag and drop from any image assets to copy and paste a texture asset to another slot.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 238

Script
The Script action lets you modify the registered UI parameters of a Viz Engine container script. Additionally, it lets
you invoke any of the script's functions with its respective parameters.

An example of a container script UI in Viz Artist.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 239

Drag and drop a Script container plug-in from the tree view into the action canvas to create a Script Action.

Click on the ADD FUNCTION INVOCATION button to add any of the script's functions to the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 240

After adding the functions you whish to invoke, enter the parameters where necessary. A hint in the parameter's
text box in the parameter gives you the signature of the function.

On execution of the Script Action, all UI parameter values and function invocations listed in the action are sent to
the selected channel's Viz Engine(s).

Note: Parameters need to be separated by a space character. When strings containing spaces are passed
as parameters, use the quote " character as a delimiter of the string as in the "Hello World" sample above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 241

Use the small trash icons on the right hand side of each row to remove parameters that you don't want to send to
the Viz Engine. Press the refresh icon to reload the script from the Viz Engine's scene. Make sure the scene is loaded
on the Editing Engine.

Text
This menu lets you set text in the selected container. The action supports standard text geometry as well as Text
introduced in Viz Engine 4.3.

Transformation
Transformation lets you set position, rotation and scaling of the selected container. You can also scale in proportion

by clicking the Lock icon next to the scaling panel. Position, Rotation and Scaling can be disabled using the
check boxes. When disabled, those parts are not being sent to the Engine on execution. For example, when
selecting Rotation only, only the rotation of the target container is affected on execution.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 242

It's possible to create a linked action for TRANSFORMATION actions. This option is useful for controlling different
scenes with the same tree structure, for example.

To Create a Linked Action
Linked actions are useful for controlling different scenes with the same tree structure, for example.

Right-click on the panel and select Create Linked
Action (or ALT + drag on an action box).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 243

A new action box, cloned from the original one, is displayed.
Both boxes have the linked icon at the top left corner.

The linked icon also appears on the box saved in the favorite
area, if applicable.

Any changes that are now made to one of the related boxes
affects them all, until the clones are removed.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 244

Viewport

Drag and drop a Viewport container plug-in from the tree view into the action canvas to create a Viewport Action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 245

Specify the Scene to be loaded to be loaded into the viewport or Clear Scene to clear the currently loaded scene of
the viewport. Select Reset Stage to reset the stage on scene load. Camera ID selects the camera to be used within
the viewport scene.

When Virtual Window is checked the selected position, rotation and width and height are sent to the viewport
plug-in.

Visibility

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 246

Use the visibility menu to toggle a container on or off. The container can be set to ON, OFF, DUAL or toggled
(switched to the opposite of the current state).

When DUAL mode is selected, left clicking Execute switches the container on and right clicking switches the
container off. In the Dual mode colors section, two distinct colors can be defined for on and off states in order to
make the state of the container more visible.

See Also

 Viz Artist User Guide for more information about Scene types.

https://docs.vizrt.com/viz-artist

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 247

6.4.3 Other Action Types
Right-clicking in the main area makes a menu appear where you can create the following:

 Flowics Playlist
 Multizone Chroma Key
 NDI
 Scene Loader
 Unreal Scene Loader

 Using the Browser to Select a Project
 Tecnopoint
 Telemetrics
 Utah
 Viz Clip
 Vinten Control

 To Import a Vinten Shot

Flowics Playlist

A Flowics Playlist action is used to play out or update a Flowics playlist item. The action can only animate in the
playlist element, update it or animate it out. It is not possible to control the content of the playlist items. The
graphics package needs to be published as Rundown Control.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 248

Make sure the action uses the correct channel containing the Flowics engine pointing to the respective Package.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 249

Multizone Chroma Key

The Multi-zone Chroma key is often used in outdoor sporting event broadcasts, such as sports productions where
more than one color needs to be keyed out.

Like the single Chroma Key, it's also possible to set parameters such as the color of your chroma and other fine
tuning parameters like U, V, Blend etc. in Multizone Chroma Key.

Altitude and Height parameters can also be set. See Multizone Chroma Keying for more information on this topic.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 250

NDI

NDI actions allow you to command an NDI camera to go to a certain preset at a configurable velocity.

When creating an NDI action, the configurable content is blocked until an NDI source linked to a controllable
camera is selected. This can be achieved by clicking the Search button which provides a list of all available NDI
sources and let you select those that can be controlled.

Once a valid source has been selected, the configurable values are unlocked and an UI displaying the connected
NDI source is shown. This new interface serves two purposes: to show the NDI source identification and its status;
To allow the user to control linked camera and verify / modify its presets.

Clicking on the Cogwheel button next to the connected NDI Source opens up a new Window with the NDI Source
output and controls that can be used to interact with the camera.

Move the camera (Pan/Tilt), change zoom, exposure (Manual or Automatic), Focus (Manual or Automatic) and white
balance, and set and store presets:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 251

When used in conjunction with monogram's ORBITER module, the camera can be operated through the orbiter.

Scene Loader

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 252

The Scene Loader lets you configure whether to load a scene in the FRONT_LAYER, MAIN_LAYER, BACK_LAYER and
in one of the MATTE or GFX channels (from 1 to 16) at the same time. It's also possible to select the RESET
STAGE option to load a scene initialized in frame 0.0 on stage. To remove a single scene, press the X icon at the top-
right of the selected scene. Select CLEAR LAYER if you want to explicitly clear a specific layer. Select whether to
load the scenes using the GUID or the NAME.

When a scene was selected belonging to a Concept and an engine in the selected channel has a different Concept
configured, the scene loader loads the corresponding scene belonging to that concept.

Create Scene Loader by right-clicking on the desired scene in the panel on the left:

This automatically adds the action to your active action area:

As an alternative, an empty scene loader can be created from the context menu on the action canvas:

Viz Engine 4 introduced the concept of SUBSCENES where entire scenes can be loaded into a container in the scene
tree. When loading a scene containing a SUBSCENE plug-in, it is displayed in Viz Arc's the tree view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 253

Drag and drop the subscene icon onto the action canvas to create s subscene loader action.

The scene loader can be used to load different scenes in the subscene, clear the scene and reset the subscene
director's on load. Under CONTAINER NAME the container path of the subscene can be changed manually.

The scene loader can also set the Unreal File Collection associated to a Viz Engine scene

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 254

From the drop down menu select the UNREAL item and select a File Collection browsing the Graphic Hub. When
changing the File Collection, make sure to close the Unreal Engine using the Quit UE button, start the new File
Collection using the Start UE button.

Important: Please note that the Viz Engine automatically launches the File Collection that has been saved
with the scene. Make sure you save the Viz Scene when you want to permanently change the File
Collection within a Viz Scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 255

Unreal Scene Loader
The Unreal Scene Loader allows you to load a specific unreal map in a given project. The loader can be created
either by using the context menu on the action canvas or through the context menu on the scene tabs.

The Project indicates the Unreal project while the Level indicates the name of the level to be loaded.

The Streaming Levels show a list of the streaming levels that are shown when the scene loader executes.

In case the respective scene has been loaded in the main layer and it is associated to the scene loader, you
can use the context menu to save the scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 256

When creating a scene loader from the action canvas, click on Select Unreal Level to open the browser.

Either browse the unreal project and level browser to manually select the .uproj and .umap files or click the map
icon use the Unreal browser as shown in the screenshot below. Make sure to select the project location before
selecting the map level as the map is a location relative to the project.

Note: Manual selection of the project and map files implies that the project are stored on a file system that
is reachable by the local machine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 257

The built in browser allows you to browse the content of of the Unreal editing engine which may run on a different
machine.

Use the Add Project... button to add a project browsing on the local filesystem. The selected project is added to the
list of available projects.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 258

Selecting a new project loads it into the Unreal Engine and displays the available levels. This process may take
some time depending on the complexity of the project.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 259

In case the editing Unreal Engine is not running when the browser is opened, you can launch it by clicking the Start
Editing Engine, this launches the editing engine through the Viz Unreal Launcher. Once the engine is up and
running it automatically displays the available projects and levels.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 260

Using the Browser to Select a Project
By double clicking a project, the Unreal Engine is restarted with the respective project. The browser only shows the
levels of the currently loaded project.

 Click Refresh to refresh the layers when the Unreal Engine has been restarted with a different project.
 Double click on one of the layers to confirm the selection.

Info: The browser only works when the Unreal Editing Engine is in game mode.

Note: The unreal scene loader requires the Unreal Loader Service to be properly installed and configured.
Whenever a level is loaded that is not part of the current project, the Unreal Engine is restarted.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 261

Tecnopoint
Tecnopoint lets you control a robotic camera using the Tecnopoint TuningS server.

Command Type and Command determine the desired shot position of the robotic camera and shot type.

Telemetrics
Telemetrics lets you control a robotic camera using the Telemetrics protocol.

Program and Scene determine the desired shot position of the robotic camera.

Utah
Utah is used to route SDI video signals through a Utah Scientific router.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 262

Source and Destination determine which source ID is to be mapped to which destination ID.

Viz Clip
Viz Clip is used for managing Viz Engine’s ClipIn channel; it has two working modes:

In the LOAD menu, you can select which clip to play (Local
file system or Media service) and play options (Play on load,
Loop and Queue Clip).
Queue Clip lets you set the selected clip to the pending
position. It then plays as soon as the currently playing clip
finishes.

Use the CONTROL menu to START, STOP, CONTINUE and
PAUSE the clip.

If a Viz One server has been configured, the Clip Action can also browse for clips on Viz One.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 263

The Viz Engines inside the selected channel need to be configured as Engine endpoints in Viz One in order to
transfer the clips on the Engines. A progress bar on top of the action indicates the transfer progress.

Vinten Control

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 264

Vinten has it’s own software and service for controlling cameras. You can use the joystick to move cameras and save
the shot. It's useful for broadcasters to have the same opening camera animation easily available on a TV program.

Shots are the saved camera movements in Vinten Automation Services software.

Once you have created and saved a shot in Vinten, it's possible to import it into Viz Arc using the Vinten Control
menu. There are three timer controls:

 JUMP TO: The quickest way to switch from the selected shot to the next shot.
 MOVE TO: Configures a time in which it does the shot animation; if the time is too early, it does the

animation in the minimum time requested.
 STOP: Stops the selected shot.

To Import a Vinten Shot
A step-by-step procedure for importing a Vinten Shot into your Viz Arc project follows below:

Select Create Vinten Control Action from the context menu to
make the panel on the left appear. The shot list is empty.

To add a Vinten shot, press the Add Shot
Command button . A window containing all of
the shots saved in the Vinten software (Vinten Automation
Services) is displayed.
It's possible to reorder shots alphabetically or reverse and
refresh by pressing the respective buttons at the top right of
the window.

Select your desired shot, and it is automatically added to the
action box.
You can now assign a time mode between JUMP or MOVE.

It's possible to import multiple shots into the same action box
and create a list or keep every shot in a single box.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 265

It's also possible to add a stop command by pressing the Add
Stop Command button.

To remove any shot or stop, press the Trash can icon next to
the desired element.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 266

6.5 Builder Mode
Builder mode lets you build and configure all the actions required for On Air operation.

Builder mode consists of three main views containing a variety of tools for creating projects:

 Actions View
 Set View
 Script View

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 267

6.5.1 Actions View

Actions View contains all the actions that are part of your Viz Arc project.

 Actions can be arranged in any way throughout the canvas.
 Easy access to the most used actions can be gained by adding them to the Favorites Bar.
 Actions can be filtered for quick access.

This section covers the following topics and procedures:

 Working with Playlists
 Creating a Playlist
 Creating Groups
 Loop Mode
 Auto Preview
 Group Duration
 Executing an Action in Playlist
 Renaming an Action in a Playlist
 Working with Multiple Playlists

 Creating and Editing Scene Actions
 Scene Actions

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 268

 Project Actions
 To Create Project Actions
 Editing Actions

 Common Action Tools
 Channel
 Edit Mode
 Execute

 Favorites
 To Add Actions to Favorites
 To Remove Actions from Favorites
 To Remove All Actions from Favorites
 Searching, Sorting and Removing All Actions
 Search
 Sort By
 Remove All

 Save Action as Data to Viz Pilot

Working with Playlists

Creating a Playlist
You can create a PLAYLIST in the upper right section in ACTIONS view. Playlists are useful for arranging actions and
creating a rundown.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 269

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 270

Import by dragging the desired action into the playlist pane while holding in the SHIFT key. Release the action
inside the playlist pane to include it in the playlist.

Creating Groups
Create groups and sub-groups by right-clicking Create Group:

Loop Mode
To set a full playlist in loop mode, enable the main Loop selection at the bottom of the playlist pane.

Auto Preview
When enabled, a preview command is executed on the action when a playlist item is selected by a mouse click. This
allows in particular to execute a template on a configured preview channel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 271

Group Duration
It's possible to specify the duration in seconds of each action (the default is one second). The group’s duration is the
sum of the duration of all of the actions it contains.

Executing an Action in Playlist
Right-click on on action and select Execute Action from the drop down menu:

Renaming an Action in a Playlist
To rename an action, right-click on the selected action and click Rename Action:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 272

In the Channel column you can see the currently associated output channel for the action. To change it, change it
on the action directly.

Use the Highlight Action context menu entry to find the linked action.

Note: The action is also renamed in Actions view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 273

Working with Multiple Playlists
A single project can handle multiple playlists. To work with multiple playlists, right-click inside the Tab pane and
select Add Tab.

Once you are finished creating playlists, you can control the rundown by pressing PLAY, STOP or LOOP.

Creating and Editing Scene Actions

Scene Actions
Before creating scene actions, select the scene tab from the scenes panel and load the scene to retrieve properties.

Note: The duration value is the total duration in seconds of all the elements in playlist (or the currently
active playlist, if a project contains more than one playlist).

Note: All actions share a common set of tools and properties. For more details, see Common Action Tools.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 274

1. Drag and drop any of the supported properties from either the Control Channels, Scene
Tree or Directors section in the scene panel to the actions canvas.

2. Enter the desired values in the editing popup.
3. Click anywhere outside the editing popup to save and close your creation.

Project Actions
Project Actions can be created even when no scene is loaded or added into the working project. These action types
are not linked to any particular container or scene and can, for example, be used to group actions together or to
send Viz commands to a channel.

To Create Project Actions

Click on the desired Project Action Types button on the CREATE toolbar.

OR

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 275

 Right-click on the actions canvas.
 Select the desired Project Action Types from the context menu.

Editing Actions
Any action in a project can be edited to change the logic of the action.

Actions can be edited either:

 By pressing the Edit button on any of the actions.
OR

Info: Other actions can be also found by right-clicking on an empty area in the project. For more
information see Other Action Types.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 276

 By right-clicking on any action and selecting Edit from the context menu.

Common Action Tools
All actions created in Viz Arc share a common set of tools.

1. Channel: Selected channel to execute actions.

2. Edit Mode: Press the Edit button to expand the editing box to modify general action settings.
3. Execute: Executes the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 277

Channel

When executed, all actions send the relevant commands to Viz Engine to manipulate the scenes. These commands
are sent to the Engines defined in the selected channel for each action.

Edit Mode
Press the Edit button to expand the editing box to modify general action settings.

1. Action name: Each action includes a name that can be used to filter actions.
2. Action Color: It's possible to assign a color to each action.
3. Action delay: Action delay adds an execution delay in milliseconds.
4. Keyboard shortcut: Assigned keyboard shortcut.
5. GPI: GPI Channel (HI-0/HI-15, LO-0/LO-15).
6. Tooltip: Edit the tooltip for the action.
7. Destination: Whether the destination for a Viz scene based command should be sent to the renderer or a

specific scene.
8. Control Channel/Container: The Control Channel or Container path to which the action is linked.

Execute

 The Execute button lets you send a specific action command to the selected channel.

Note: It's also possible to access common action tools through the context menu by right-click on an
action box:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 278

Favorites
Favorites is used for easy access to the most commonly used actions. Favorite actions appear in this section:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 279

To Add Actions to Favorites

1. Right-click on the selected action or actions.
2. Select Add to Favorites from the context menu.

Note: It's possible to add more than one action to the favorites section at the same time. Select all the
desired actions and follow the same steps as above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 280

To Remove Actions from Favorites

1. Right-click on the selected action or actions.
2. Select Remove from Favorites from the context menu.

To Remove All Actions from Favorites
It’s possible to remove all favorite actions from the favorites section.

1. Right-click anywhere in the favorites section.
2. Select Clear All Favs from the context menu.

Searching, Sorting and Removing All Actions
Actions can be searched by name in order to easily locate Actions in a project.

This section describes the different options in the actions tool bar.

1. Search: Search actions by name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 281

2. Remove all: Removes all actions from the project.

Search

Click the Search button and a popup will initially show all available actions. Type a string to narrow down the
search for an action containing the string in its name. By selecting an action it will be selected and shown on the
action canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 282

Sort By
It's possible to sort actions that are in the project by name (ascending) or type.

It’s also possible to sort by right-clicking on an empty space in the action area.

Remove All
Press the Remove All button to remove all actions in the project. You can undo this operation by clicking
the UNDO icon on the Projects Toolbar.

Save Action as Data to Viz Pilot
Once you have created an action in Viz Arc, you can create a Viz Pilot data element and use it in Viz Director as a
normal data element.

1. First, import the Viz Arc Pilot Template using Pilot Template Wizard. The template can be found in the
program-data directory (typically C:\ProgramData\vizrt\VizArc”) under “Resources\VCP.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 283

2. Create your template and save it.

Note: The template has a custom execution logic that performs a REST call when the Viz Pilot data
element or template is taken On Air.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 284

3. Once you have saved the template, you need to set up a Concept and template in the config panel in Viz Arc.

4. Create an action or select an existing action and right-click on it.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 285

5. Select Create Pilot data element. The window below appears. Insert a name for the new Viz Pilot data
element.

6. Now, switch to Viz Director and you should see your new data in the Data section. If you can’t see it, right-
click on the data list and press Refresh.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 286

7. Once this data is saved, you can operate Director like normal; for example, you can create a playlist and
import all Viz Arc data.

8. Once you have a full playlist, you can go On Air with the Director.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 287

See Also

 Supported Action Types
 Viz Pilot User Guide

https://documentation.vizrt.com/viz-pilot

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 288

6.5.2 Set View
Viz Arc lets you work with both outdoor and indoor Augmented Reality events. You can search for a specific place in
maps and set up your outdoor set or import an AutoCad project and set up the entire elements environment in the
scenography.

This section covers the following topics:

 Map
 Studio
 Working with Virtual Studio

 To Position an AR Element
 To Add a Calibration Point
 To Set up a Camera
 To Draw a Polygon
 To Set up a Height Area
 To Set a Zero Point

 4 Point Calibration
 Prerequisites
 Adding Calibration Points

 Calibration
 Applying Calibration

Map
Map items can retrieve map data from Bing.

Note: Viz Arc uses the metric system.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 289

Bing Map

Map is used to set up an external environment. You can search for a place in the search bar and place elements
directly info the map area. Map uses XYZ positions OR geolocation and transforms them into Viz Units. The map
menu lets you:

 Zoom in/out with the mouse wheel.
 Move the map with the center mouse button.
 Left-click on an element to move it.
 Right-click on an element to remove it.
 Right-click on a map:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 290

 Set up a Camera
 Add a Calibration Point
 Draw a Polygon
 Set up a Height Area to intercept the height of the object
 Set a Zero Point
 Clear All elements in map (except for the Zero Point)

By selecting a Map item, you can choose to send your current map to the main layer or back layer:

Studio
It's possible to import an AutoCAD project (.dxf) and set up cameras and objects directly into your custom studio
using STUDIO.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 291

Indoor Map

Studio is used to set up an internal environment. You can import your Studio map project using the Browse icon
 and place elements directly into the plan area. Studio uses Viz Units only.

Working with Virtual Studio
This section covers how to set up virtual studio and augmented reality elements in relation to your physical
environment.

 To Position an AR Element
 To Add a Calibration Point
 To Set up a Camera
 To Draw a Polygon
 To Set up a Height Area
 To Set a Zero Point
 Prerequisites
 Adding Calibration Points
 Applying Calibration

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 292

To Position an AR Element

Drag and drop the desired container’s plugin (only
position or transformation control channel) into the
map area.

The green icon appears on the map.

The same elements action that was just created can
also be found in the action pane in the main
window.

Selecting the icon or element in the list makes the
corresponding config section appear on the right
side of the SET window.

This menu lets you position graphics along the
camera center at a given distance.

This icon lets you lock or unlock an element position
on the map canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 293

To Add a Calibration Point

Right-click on the map OR in the studio area and select Add
Calibration Point in the context menu.

The target icon appears on the map.

The item is also added to the element list on the right of the map/
studio area.

Selecting an icon or element in the list makes the corresponding
config section appear on the right side of the SET window.

It’s possible to lock or unlock a camera position on the map canvas
using this command.

To Set up a Camera

Right-click on the map OR in the studio area and select Add
Camera in the context menu.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 294

The camera icon appears on the map.

The item is also added to the element list on the right of the map/
studio area.

Selecting an icon or element in the list makes the corresponding
config section appear on the right side of the SET window.

It’s possible to lock or unlock a camera position on the map
canvas using this command.

To Draw a Polygon

Right-click on the map OR in the studio area and select Polygon… in the
context menu.

The cursor transforms into a pen and you can start to draw the
polygon on the map.

Mark as many vertices as you need.

The item is also added to the element list on the right of the map/studio
area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 295

Selecting an icon or element in the list makes the corresponding config
section appear on the right side of the SET window.

It’s possible to lock or unlock a camera position on the map canvas
using this command.

To Set up a Height Area

Right-click on the map OR in the studio area and select Height Area… in
the context menu.

Click once to set a point and click again to set the height. This icon
appears on the map.

The item is also added to the element list on the right of the map/studio
area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 296

Selecting an icon or element in the list makes the corresponding config
section appear on the right side of the SET window.

It’s also possible to lock or unlock the height area position on the map
canvas.

To Set a Zero Point

Right-click on the map OR in the studio area and select Set Zero Here
in the context menu.

This icon appears on the map.

The item is also added to the element list on the right of the map/
studio area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 297

Selecting an icon or element in the list makes the corresponding config
section appear on the right side of the SET window.

It’s also possible to lock or unlock a zero point position on the map
canvas.

Once an element (like a camera) has been added, it's possible to edit the parameters:

 Position – choose between
 geolocalization: latitude, longitude, altitude, and type: Decimal, Deg Min Dec, UTM , Dec Min Sec
 XYZ

 Rotation
 Scaling

You can toggle show ruler to make small adjustments to element positions on the map. Rotate canvas by holding
down the left cursor button to the desired map position.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 298

4 Point Calibration
4 Point Calibration can be used to calculate the position and orientation of a (typically mechanically) tracked
camera. Using this type of calibration requires knowledge of at least four physical points in the domain (for
example, the corners of a soccer pitch or well-known points on a horse race track).

Map View showing a soccer pitch and 4 calibration points.

Prerequisites

 The calibration points must all be on the XZ plane (same height).
 The camera must be on a fixed position and can't be moved in space.
 At least four points need to be measured/known on the tracking domain.
 The points must define a surface and not just a one dimensional line.

Tip: The Ruler tool is useful since it allows you to measure the distances on your area in Viz Arc in real time.

Note: It's possible to delete all elements in a map except the Zero Point.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 299

 Make sure the tracking hub sends the tracking information to Viz Arc and make sure it includes the camera
lens rig containing a valid calibration.

Adding Calibration Points
Add calibration points from the map's context menu:

Note: Do NOT use a parent transformation rig on top for 4 Point calibration. The translation and rotation
are handled inside the root node of the Viz Artist scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 300

Select the calibration point you just added and move it on the map, or enter its coordinates manually:

Once all calibration points have been added and positioned, the actual calibration process may start.

Calibration
Select the camera to be calibrated.

1. On the camera user interface select the marker towards which you want to point the camera. The calibration
point is colored yellow on the map canvas.

2. The physical camera should now fully zoom into the marker and try to center it as best as possible.
3. Once the marker is centered, click the Set button. If your preview has been set up so that the camera is

visible and you have a valid lens calibration, you can also click the position in the view instead of using
the Set button.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 301

4. Continue this procedure for all or at least 4 calibration points.

Applying Calibration
1. Once at least four points have been set, click the Calculate! button to calculate the presumed position and

orientation of the camera. You can choose between Method 1 and Method 2, hit Calculate! after switching
algorithm. Generally, Method 2 is more accurate but needs more and more accurate calibration points. Try
both and pick the one that gives you better visual results.

2. Under the Global Transformation dropdown, select the transformation action holding the world
transformation of the main scene (typically the root node of the AR/VR scene).

3. Click Apply to apply the calculated transformation and rotation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 302

Use the R button to refresh the list of available transformation actions.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 303

Typically the transformation to be used is the root node of the scene.

Once calibrated you should be able to position AR graphics on your pitch.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 304

6.5.3 Script View
In Script View, you can write your own custom script in JavaScript language through Google's V8 or Microsoft's
JScript (ECMAScript3) or in VBScript language, as in the following example:

It's possible to create custom forms and components, such as text boxes and buttons.

To run the script, select the Start button on the top left
of the window.

Form Design can be edited by selecting the UI button .
Every element can be selected and moved, aligned and
distributed on the main form.

To go back to code editing, select the CODE button or select
BOTH to have code and UI side by side.

To edit a script, press the Stop button on the top of the
script main window.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 305

Console logs and debugs are displayed in the CONSOLE pane.

When configured and licensed the AI Prompt can be used to
create or modify the global script.

Import code internally from the clipboard or an external text
file in the script pane.

Use the Language menu to select a scripting language.

 MS VBScript: Microsoft Visual Basic Scripting language
 MS JScript: Microsoft implementation of the ECMA 262 JavaScript
 V8 JavaScript: Google’s open source high-performance V8

JavaScript
 Using CommonJS syntax to import modules (using require).

 JavaScript ES6 (ECMAScript 2015): Open source high-
performance JavaScript

 Using ES Modules syntax to import modules (using import)

It is recommended to use JavaScript ES6 language when
possible.

In edit mode, Script Callbacks can be selected from the list and added:

https://learn.microsoft.com/en-us/previous-versions/t0aew7h6(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-articles/hbxc2t98(v=vs.84)
https://v8.dev/
https://262.ecma-international.org/6.0/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 306

You can locate a custom function by selecting it from the Functions list:

See Also

 Scripting Classes

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 307

Action Properties
All Actions in the project can be accessed and modified via scripting. Use the GetAction function to get a reference
to the action:

 BaseAction GetAction(string actionName)

Every Action type has these generic properties:

Action type Description

string Name The title of the action.

string Description By default this is the type of action (for example, "Key", "Chroma",
"Image" etc.). When assigned to a TransformationAction and visible on
the SET view, this field is used as a tooltip when the mouse hovers over
the element.

int ExecutionDelay Expressed in milliseconds, minimum delay is 0 (default), maximum

delay is 10000 (10 seconds).

Every Action type has these generic methods:

 void Execute(): Executes the action.
 void Preview(): Executes the action on the preview channel.
 void QueryState(): Queries the current state of the action from the Editing Engine. For example, if the

action is a transformation action, it retrieves the current transformation from the editing engine's scene tree
and updates the UI accordingly.

The example below shows how to set the alpha value to 75% of an Alpha Action called AlphaText and execute the
action from scripting:

Sample

var alphaAction = GetAction("AlphaText");
alphaAction.Alpha = 75.0;
alphaAction.Execute();

There are specific properties/functions for each action type:

 Alpha
 Chroma
 Command
 ControlObject

Note: It's possible for a project to contain multiple actions that have the same name. If that is the case for
your project, the first Action created with a name is returned. Make sure to use unique names when
accessing actions through scripting.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 308

 Director
 Group
 Image
 Light
 Key
 Material
 MSE
 Multizone Chroma Key
 NDI
 Omo
 PBR
 Phong
 Scene Loader
 Script
 Shared Memory
 Telemetrics
 Text
 Tracking Hub Command
 Transformation
 Utah Router
 Unreal Animation
 Unreal Blueprint
 Unreal Dispatcher
 Unreal Scene Loader
 Unreal Sequencer
 Unreal Text
 Vinten
 Virtual Studio
 Visibility
 Viz Camera
 Viz Clip
 Viz PBR Material

Alpha
Properties:

 double Alpha

Chroma
Properties:

 ChromaPrecisionContent Precision
 double hueAdjust
 double saturationAdjust
 int edgeBlur

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 309

 double despillScale
 double backingPlateR
 double backingPlateR
 double backingPlateR
 double yellowGain
 double cyanGain
 int denoiseRadius
 int denoiseSharpen
 double opacityPoint
 doube transparencyPoint
 double bgEdgeGain
 double bgSpillGain
 double bgLWBlur
 double colorEdgeGain
 double colorSpillGain
 double colorLightwrapR
 double colorLightwrapG
 double colorLightwrapB
 bool addShadows
 double innerShadows
 double shadowsGain
 bool addHighlights
 double innerHighlights
 double highlightsGain
 double masterLiftR
 double masterLiftG
 double masterLiftB
 double masterGammaR
 double masterGammaG
 double masterGammaB
 double masterGainR
 double masterGainG
 double masterGainB
 double masterSaturation

Sample

var action = GetAction("Chroma");
// sample for setting some color Precision Keyer settings
action.Precision.hueAdjust = -1140;
action.Precision.saturationAdjust = 2.0;

Command
Properties:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 310

 string Command

ControlObject
See Control Object Classes.

Director
Properties:

 string DirectorType
 Possible values: START, STOP, CONTINUE, CONTINUE_REVERSE, PLAY_FROM, PLAY_FROM_REVERSE,

FROM_TO, GO_TO, PAUSE

Group
This action has no additional public properties.

Image
Properties:

 string Image
 Value should be a Graphic Hub path that starts with "IMAGE*"

 bool IsBuiltin
 string Builtin

 Possible values: LIVE1, LIVE2, CLIP1, etc.
 double PosX
 double PosY
 double RotX
 double RotY
 double RotZ
 double ScaX
 double ScaY

The Image parameter can be assigned to a Graphic Hub path when the string starts with "IMAGE*"; when it starts
with "http" it will be assumed to be a web link (or a Media Service link), otherwise it will be interpreted as a local file
path, see the samples below:

Sample

var imageAction = GetAction("Image");
imageAction.Image = "IMAGE*/VizArc/arcLogo";
// or
imageAction.Image = "http://127.0.0.1:21099/serve/original/AR_03.jpg";
// or
imageAction.Image = "C:/Users/admin/Desktop/CAKE.jpg";

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 311

Light
Properties:

 string LightType [read only]
 Possible values: NONE, SPOTLIGHT, DIRECTIONAL, AREA, POINT

 string LightColor
 double LightIntensity
 double DiffuseIntensity
 double SpecularIntensity
 double LightRadius
 double OuterConeAngle
 double InnerConeAngle
 int LightLayer
 double DirectionalSpread
 double RadiosityMultiplier

Key
Properties:

 bool KeyEnabled
 bool CombineBackground
 bool DepthInfoOnly
 bool DrawKey
 bool DrawRGB

Material
Properties:

 string ColorHex [#RRGGBB]
 string Diffuse [#RRGGBB]
 string Emission [#RRGGBB]
 string Specular [#RRGGBB]
 string Ambient [#RRGGBB]
 double Alpha [0…100]
 double Shiniess [0…100]
 bool UseSimpleColor

Functions:

 SetColorRBG(int r, int g, int b)

MSE
Properties:

 string Page
 string DirectorType

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 312

 Possible values: TAKE, CONTINUE, TAKE_OUT

Multizone Chroma Key
Properties:

 string ZoneName
 double Height
 double Altitude
 double Luminance
 double MinLuminance
 double MinGrad
 double MaxLuminance
 double MaxGrad
 double Blend
 double U
 double V
 double UVDiameter
 double UVGradient
 bool IsFullscreen
 bool PickLuma
 bool PickChroma
 bool PickInViz

NDI
Properties:

 int Preset
 Value must be between 0 and 99

 float Velocity
 Value must be between 0 and 1

Functions:

 void SetSource(string name)
 Sets the source to a different NDI source called name.

 void GotoPreset(int preset, float velocity)
 Goes to a stored preset preset. The value range is from 1 to 100. Move the camera using velocity (from

0.0 to 1.0), where velocity of 1 is maximum speed.
 void GotoPreset(int preset)

 Goes to a stored preset preset. The value range is from 1 to 100. The velocity is determined on the
action’s current velocity property value.

 void StorePreset(int preset)
 Stores the current camera position as preset. The value range is from 1 to 100.

 void SetTally(bool program, bool preview)
 Sets or unsets the tally of the current NDI source to program or preview, or both.

 bool IsOnProgram()
 Returns whether the source is in program.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 313

 bool IsOnPreview()
 Returns whether the source is in preview.

 void SetZoom(double value)
 Sets the zoom value of the NDI camera, the range is from 0.0 (fully zoomed out) to 1.0 (fully zoomed

in).
 void SetFocus(double value)

 Set the focus value of the NDI camera, the range is from 0.0 to 1.0.
 void SetPanTiltValue(double pan, double tilt)

 Sets the absolute pan and tilt values of the NDI camera, the ranges are for both from 0.0 to 1.0.
 void SetPanTiltSpeed(double pan, double tilt)

 Sets the pan and tilt speed values of the NDI camera, the ranges are for both from -1.0 to 1.0. If the
values are non zero, the camera moves continuously along the pan/tilt axis with the given speed and
direction.

Omo
Properties:

 int ElementIndex
 bool ShowUntil

PBR
Properties:

 Modes
 bool IsPreload
 bool IsGHMode

 GH Mode
 string PhongMaterialAsset

 Value should be a Graphic Hub path that starts with "MATERIAL_DEFINITION*"
 Values Mode

 Material Settings
 string ColorTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 |string ColorTint
 bool ColorIsSRGB
 string EmissiveTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string EmissiveColor
 double EmissiveIntensity
 string NormalTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string RoughnessTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double RoughnessFactor
 string MetallicTexture

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 314

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double MetallicFactor
 string AmbientOcclusionTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string HeightTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double HeightDepth
 string EnvironmentTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double EnvironmentRotation

 Texture Settings
 double TillingU
 double TillingV
 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

Phong
Properties:

 Modes
 bool IsPreload
 bool IsGHMode

 GH Mode
 string PbrMaterialAsset

 Value should be a Graphic Hub path that starts with "MATERIAL_DEFINITION*"
 Values Mode

 Material Settings
 string ColorTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 |string ColorTint
 bool ColorIsSRGB
 string AmbientTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string AmbientColor

 For example: "#FF00A0"
 double AmbientIntensity
 string DiffuseTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string DiffuseColor

 For example: "#FF00A0"
 double DiffuseIntensity

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 315

 string SpecularTexture
 Value should be a Graphic Hub path that starts with "IMAGE*"

 string SpecularColor
 For example: "#FF00A0"

 double SpecularIntensity
 string EmissiveTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string EmissiveColor

 For example: "#FF00A0"
 double EmissiveIntensity
 double Shininess
 bool Lit

 Whether the material should be lit
 Texture Settings

 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

Scene Loader
Properties:

 bool UseGUID
 string FrontUUID
 string MainUUID
 string BackUUID
 string GfxUUID
 string SubSceneUUID
 bool FrontClear
 bool MainClear
 bool BackClear
 bool GfxClear
 bool SubSceneClear
 bool FrontResetStage
 bool MainResetStage
 bool BackResetStage
 bool GfxResetStage
 int GfxLayerNumber [0,…,17]
 bool SubSceneResetStage

Script
Functions:

 dynamic GetParameterValue(string name)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 316

 Returns the value of a Script UI element. The name is the name of the UI parameter as specified in the
viz script by the RegisterParameter* function.

 bool SetParameterValue(string name, dynamic value)
 Sets the value for a UI parameter. The name is the name of the UI parameter as specified in the viz

script by the RegisterParameter* function. Returns true on success.

Example

// get the script action with the name "scriptA"
let action = GetAction("scriptA")

// set some parameter values
action.SetParameterValue("aDouble", 3.3)
action.SetParameterValue("aInteger", 2)
action.SetParameterValue("aString", "another string")
action.SetParameterValue("aMultiString", "another\\nmultistring")
action.SetParameterValue("aBool", false)
action.SetParameterValue("aImage", "c:/tmp/test.jpg")

// read the parameter values
Console.WriteLine("aDouble value is " + action.GetParameterValue("aDouble"))

Shared Memory
Functions:

 string[] GetKeys()
Returns the list of keys present in the shared memory action.

 string[] GetValues()
Returns the list of values present in the shared memory action.

 string[] GetDestinations()
Returns the list of destinations present in the shared memory action.

 string GetKeyValue(string key)
Returns the value of key. Returns null if key is not present int the shared memory action.

 string GetKeyDesitnation(string key)
Returns the destination of key. Returns null if key is not present int the shared memory action.

 void AddKeyValue (string key, string value)
Add key/value pair to the shared memory action.

 void AddKeyValue (string key, string value, string destination)
Add key/value pair to the shared memory action and set it to destination.

 void SetKeyValue (string key, string value)
Set a new value to to the key entry. Adds the pair if key is not present int shared memory action.

 void SetKeyValue (string key, string value, string destination)
Set a new value to to the key entry and set it to destination. Adds the pair if key is not present int shared
memory action.

 void SetKeyDestination (string key, string destination)
Change the destination to the key entry.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 317

 void InsertKeyValue (int index, string key, string value)
Insert key/value pair to the shared memory action at position index.

 bool Remove (string key)
Remove key from shared memory action.

 void RemoveAt (int index)
Remove key at index position from shared memory action.

destination can be either "SYSTEM", "COMMUNICATION" or "DISTRIBUTED"

Telemetrics
Properties:

 int Program
 int Scene

Text
Properties:

 string Text

Tracking Hub Command
Properties:

 string Command

Transformation
Properties:

 double PosX
 double PosY
 double PosZ
 bool PosEnabled
 double RotX
 double RotY
 double RotZ
 bool RotEnabled
 double ScaX
 double ScaY
 double ScaZ
 bool ScaEnabled

Utah Router
Properties:

 int Source
 int Desitnation

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 318

Unreal Animation
Properties:

 string AnimationMode
 Possible values: LOAD, CONTINUE, PAUSE

 bool IsLooping
 double PlayRate
 double BlendTime
 string SelectedAnimation

Unreal Blueprint
See Control Object Classes.

Unreal Dispatcher
This action has no additional public properties.

Unreal Scene Loader

 bool GetStreamingLevelVisibility(int index)
 Returns true when the Streaming Level at position index is visible

 void SetStreamingLevelVisibility(int index, bool value)
 Sets the Visibility to value, at position index.

 string[] GetStreamingLevels()
 Returns the list of Streaming Levels present in the action.

 int GetNumberOfStreamingLevels()
 Returns the number of Streaming Levels present in the action.

Unreal Sequencer
Properties:

 string DirectorType
 Possible values: START, STOP, CONTINUE, START_REVERSE, CONTINUE_REVERSE, PLAY_FROM,

PLAY_FROM_REVERSE, GO_TO, PAUSE
 int LoopCount
 double PlayRate

Unreal Text
Properties:

 string Text
 double ScaleX
 double ScaleY

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 319

Vinten
This action has no additional public properties.

Virtual Studio
Properties:

 int SelectedSceneIndex
 bool SendPosition
 string SetName
 double PosX
 double PosY
 double PosZ
 double RotY

Visibility
Properties:

 bool Visibility
 string VisibilityMode

 Possible values: ON, OFF, ONOFF, DUAL_MODE

Viz Camera
Properties:

 int SelectedCamera
 bool RemoteEnabled
 bool IsRemote
 bool AngleEnabled
 double Angle
 bool PosEnabled
 double PosX
 double PosY
 double PosZ
 bool DirEnabled
 double Pan
 double Tilt
 double Twist

Viz Clip
Properties:

 string ClipName
 bool IsLoader
 string ControlType

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 320

 possible values: START, STOP, CONTINUE, PAUSE
 string SelectedClipChannel
 bool PlayOnLoad
 bool HasLoop
 bool ShouldQueue

Viz PBR Material
Properties:

 bool IsPreLoad
 bool IsGHMode
 string PbrMaterialAsset
 string ColorTexture
 string ColorTint

 For example: "#FF00A0"
 bool ColorIsSRGB
 string EmissiveTexture
 string EmissiveColor

 For example: "#FF00A0"
 double EmissiveIntensity
 string NormalTexture
 string RoughnessTexture
 double RoughnessFactor
 string MetallicTexture
 double MetallicFactor
 string AmbientOcclusionTexture
 string HeightTexture
 double HeightDepth
 string EnvironmentTexture
 double EnvironmentRotation
 double TillingU
 double TillingV
 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 321

Control Object Classes
After having accessed the action holding the list of ControlObjects thought the GetAction method, the single
ControlObjects can be retreived using the global method

 BaseControlObject GetControlObject(BaseAction action, string ControlObjectID)

Most Control Object types have the following generic properties:

 Text (String)
 This property adapts to all objects (execute string)
 IntControl.Text = "5"

 ImageControl.Text = "IMAGE*FolderA/SubfolderB/ImageName"
 ID (String)

 Returns ObjectID
 Description

 Returns the object description

Each Control Object type has specific properties:

 Control Container
 Control Image
 Control Material
 Control Omo
 Control Text
 Control List

 Single Cells Properties
 Control Integer
 Control Double
 Control Boolean

Control Container
Properties:

 Visibility
 Position

 posX (double)
 posY (double)
 posZ(double)

 Rotation
 rotX (double)
 rotY (double)
 rotZ (double)

 Scaling
 scaX (double)
 scaY (double)
 scaZ (double)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 322

This type doesn’t have the Text property.

Control Image
Properties:

 Path (string)
 Position

 posX (double)
 posY (double)

 Scaling
 scaX (double)
 scaY (double)

Control Material
Properties:

 Path (string)

Control Omo
Properties:

 Value (integer)

Control Text
Properties:

 Value (string)

Control List

Example:

sub OnInit()
 'declare variables
 dim objAction, table, cell
 dim output1, output2, output3
 'get table obj action
 objAction = arc.GetAction("object")
 table = arc.GetControlObject (objAction, "controlObj_ID")
 Console.WriteLine("Table name: " & table.Text)
 'set values in single cells inside the table
 table(0,0).value = false
 table(0,1).value = 5
 table(2,5).x = 12
 table(3,6).value = "IMAGE*/Default/GER"
 'assign values to a variable and show in debug console
 output1 = table(0,0).Text

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 323

Properties:

 Accessor
 table[int row, int col]: returns a cell
 nbcolumns (integer): number of columns
 nbrows (integer): numbers of rows

Single Cells Properties

Cell Type Additional
Information

Example

BaseCell Text (string) Sets or gets value as
string.

Common to every cell
type.

table(0,5).x= 12 (intCell)

table(0,5).text = "12"

(intCell)

BoolCell Value
(boolean)

table(0,5).active= true

DoubleCell Value (double) table(0,5).x= 12.8

DupletCell X (double)
Y (double)

table(0,5).text = "0.55 0.2"

GeomCell Value (string) table(0,5).value = "GEOM*/folder/geometry"

ImageCell Value (string) table(0,5).value = "IMAGE*/folder/image"

IntCell Value (integer)

MaterialCell Value (string) table(0,5).value = "MATERIAL*/folder/

material"

TextCell Value (string)

TripletCell X (double)
Y (double)
Z (double)

table(0,5).text = "0.55 0.23 1.23"

 output2 = table(0,1).Text
 output3 = table(0,2).Text
 Console.WriteLine("cell - " & output1 & " | " & output2 & " | " & output3)
end sub

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 324

Control Integer
Properties:

 Value (integer)

Control Double
Properties:

 Value (double)

Control Boolean
Properties:

 Value (boolean)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 325

Debugging

DevTools
You can use any chrome based web browser (for example, Google Chrome or Microsoft Edge) to step through Viz Arc
scripts.

1. Open your browser.
2. Enter chrome://inspect/ in the address bar.

3. Click Configure...

Add the host name where Viz Arc is running and specify the debug script port (by default, port 9222 for the

global script and port 9223 for the template builder script). Confirm by clicking the Done button.
4. Open a template in Viz Arc's template builder and start it.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 326

5. In the Chrome browser, you should now see the Viz Arc script available for debugging.

6. Click the inspect link to open the debugger. The first time you open the debugger it does not show any code.

Hit CTRL + P and select Module.

You'll now be able to set breakpoints and see the code.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 327

7. Set a breakpoint and analyze your variables and code.

Visual Studio Code
You can debug scripts with Visual Studio Code when using V8 JavaScript in the global script or in any scripted
template.

1. Install and launch Visual Studio Code.
2. Set up one or more Viz Arc V8 debug configurations:

a. Click File > Preferences > Settings to open your user settings.
b. Locate or search for the Launch configuration and click Edit in settings.json.
c. Add the following section to the file:

{
 "debug.javascript.usePreview": false,
 "launch": {
 "version": "1.2.0",
 "configurations": [
 {
 "name": "Attach to Viz Arc Global Script on port 9222",
 "type": "node",
 "request": "attach",
 "protocol": "inspector",
 "address": "localhost",
 "port": 9222
 },
 {
 "name": "Attach to Viz Arc Template Scrip on port 9223",

https://code.visualstudio.com/
https://code.visualstudio.com/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 328

 "type": "node",
 "request": "attach",
 "protocol": "inspector",
 "address": "localhost",
 "port": 9223
 }
]
 }
}

d. You can specify additional configurations for different hosts, port numbers, and other options.
See Node.js debugging in VS Code for more information.

e. Click File > Save.
3. If you’d like to debug your application remotely, you must also make sure that your firewall allows incoming

connections to your TCP port.
4. Attach the Visual Studio Code debugger to your application:

a. Click View > Debug to bring up the Debug view.
b. Select the appropriate debug configuration at the top of the Debug Side Bar.
c. Click Debug > Start Debugging.

Example screenshot showing a global script being stopped at a breakpoint.

See Also

 Node.js debugging in VS Code

Note: There are two different ports in use: One for the global script (default 9222) and one for template

scripts (default 9223). Template scripts can be debugged only when running in the designer. The ports
can be configured in the global configuration settings.

https://code.visualstudio.com/docs/nodejs/nodejs-debugging
https://code.visualstudio.com/docs/nodejs/nodejs-debugging

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 329

Profiles Classes
This section contains a list of properties and functions grouped by type that are useful for communicating with
Profile, Channel, and Engine (Viz Engine and Unreal Engine).

 Scripting Profile
 Scripting Channel
 Scripting Engine

Scripting Profile

 string Name [Get]
 Returns the profile's name.

 int NumChannels [Get]
 Returns the number of channels.

 ScriptingChannel VizEditingEngine [Get]
 Returns the configured Viz Editing Engine of the profile.

 ScriptingChannel UnrealEditingEngine [Get]
 Returns the configured Unreal Editing Engine of the profile.

 ScriptingChannel VizProgramChannel[Get]
 Returns the configured Viz program Engine of the profile.

 ScriptingChannel UnrealProgramChannel[Get]
 Returns the configured Unreal program Engine of the profile.

 ScriptingChannel VizPreviewChannel[Get]
 Returns the configured Viz preview Engine of the profile.

 ScriptingChannel UnrealPreviewChannel[Get]
 Returns the configured Unreal preview Engine of the profile.

 ScriptingChannel Accessor [int index] [Get]
 Returns the index-indexed Scripting Channel.

 ScriptingChannel GetChannel (int index)
 Returns the index-indexed Scripting Channel.

 ScriptingChannel GetChannel (string channelName)
 Returns the first channel found with name channelName.

Scripting Channel

 string Name [Get]
 Returns the channel's name.

 int NumChannels [Get]
 Returns numbers of Engines in the channel.

 ScriptingChannel Accessor [int index] [Get]
 Returns the index-indexed Scripting Engine Class.

 void SendSingleCommand (string command)
 Sends the command to all the Engines in the channel.

 void SendCommands (string[] commands)
 Sends a list of commands to all the Engines in the channel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 330

 ScriptingEngine GetEngineByName (string name)
 Returns the first Engine found with name.

Scripting Engine

 void SendSingleCommand (string command)
 Sends the command to the Engine.

 void SendCommands (string[] commands)
 Sends a list of commands to the Engine.

 string QueryEngine (string command, int timeout = -1)
 Queries the Engine with command. If timeout is specified and larger than 0, the method times out

after timeout milliseconds if it does not receive an answer within that time.
 Task<string> QueryEngineAsync (string command, int timeout = -1)

 Queries the Engine with command asynchronously. If timeout is specified and larger than 0, the
method times out after timeout milliseconds if it does not receive an answer within that time.

 string GetFlowicsOutput()
 Returns the Flowics live output URL associated to the API token of this engine. Return null if it is not a

Flowics output engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 331

Scripting Classes
This section covers the following topics:

 General
 Action
 Playlist
 Control Object
 MIDI
 Art-Net DMX
 MQTT
 RabbitMQ
 Object Tracker
 Viz Arena
 Parameter
 Channel
 Viz Engine/Unreal Engine Communication

 Viz Engine Communication
 Tracking Hub Command
 SMM Handling
 GPI
 Viz Pilot
 Timer

 JavaScript Timer Functions
 Overview
 setTimeout
 clearTimeout
 setInterval
 clearInterval
 Best Practices
 Complete Example - Countdown Timer
 Performance Considerations
 Recommended Intervals
 Best Practices
 Quick Checklist
 Notes

 StreamDeck
 Graphic Hub REST
 DataMap
 NDI
 File Handling
 Logging
 JSON
 Excel
 Callbacks
 Exposed Objects

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 332

 Console
 MessageBox
 XmlDocument
 XMLHttpRequest

 Prevent Caching
 xlAppType
 FSO

 xHost
 Performance
 Garbage Collection
 SQL Sample
 SQLite Sample
 TcpSend
 HtmlAgility Example
 Main Script-only

 Canvas Tabs Handling
 Action Template Handling
 Callbacks

 Template Script-only
 Action/Designer Handling

 Properties
 Control Object Handling
 Template Channels Handling
 ScriptingChannel
 Template Scene Handling
 Template Action Configuration
 Callbacks

 Sample Usage of Object Tracker Script API
 Common Callbacks
 Parameters

 Base Parameters Functionality
 Layout

 Panel
 Tabs
 Info
 Label
 TextColor

 Dialogs
 Color
 DateTime
 Directory
 File
 Asset
 WebView

 Bool

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 333

 Button
 Toggle Button
 Double / Double Slider
 Dropdown / Radio
 Int / Int Slider
 MultiText / Text
 Triplet
 Table

 Table Parameter Example
 Unreal
 Flowics

 Overview
 Available Methods
 Examples

 Basic Overlay Control
 Multiple Overlays
 Set Overlay State
 Batch State Changes
 Show/Hide All
 ToggleButton Integration

 Video
 Using async/await

 Using try/catch

General
Viz Arc's scripting has many classes and types that are exposed and accessible via code. The script's main class is
called arc and it exposes all the functions that are capable of interacting with the remaining parts of Viz Arc as well
as many helper functions. All of arc's functions can be accessed via scripting by calling them directly, since they are
all exposed directly to the global script, or via the arc keyword.

The following samples and codes snippets are all written using the V8 JavaScript syntax:

Accessing Viz Arc Functions

// Getting a reference to an action called VersusTemplate
var versus = arc.GetAction("VersusTemplate")
var versus = GetAction("VersusTemplate")

Note: You can also find this section in Viz Arc by selecting the Help button in the script section when
in edit mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 334

Action
All actions in the current project can be accessed using the GetAction method, whose content can be manipulated.
See Action Properties for more details.

 BaseAction GetAction (string actionNameOrGUID)
 Returns the first action found with the name provided. When a valid GUID is provided as a string, it

returns the action found with the provided GUID.
 BaseAction GetAction (string actionName, string tabName)

 Returns the first action found with the name provided inside the action tab named tabName.
 BaseAction GetActionByName (string actionName)

 Returns the first action found with the name provided.
 BaseAction GetActionByName (string actionName, string tabName)

 Returns the first action found with the name provided inside the action tab named tabName.
 BaseAction GetActionByUUID (Guid actionUUID)

 Returns the first action found with the provided GUID.
 BaseAction[] GetSelectedActions ()

 Returns an array containing all the actions that are selected on the action canvas
 BaseAction[] GetActionsOfTab (string tabName, string actionType = "ALL")

 Returns an array with all the actions inside the tab named tabName of type equal to the one provided
in actionType input. Default value ("ALL") includes all actions found.

 BaseAction[] GetActions (string actionType = "ALL")
 Returns an array with all the actions of the entire project of type equal to the one provided in

actionType input. Default value ("ALL") includes all actions.
 BaseAction GetChildAction (string nameOrUUID)

 Returns an action within the group, and only works on Group Actions.

GetAction Example

// Getting a reference to an action explicitly by its name "VersusTemplate"
var versus = GetActionByName("VersusTemplate")

// Getting a reference using a GUID
var versus = GetAction("e87a8031-a86b-4997-a169-c6f791920449")

// Getting a reference to an action called VersusTemplate
var versus = GetAction("VersusTemplate")

// Getting all NDI actions
var nidActions = GetActions("NDI")

// get the action "PrecisionKeyer" within the "INITIALIZE" group action
var chromaAction = GetAction("INITIALIZE").GetChildAction("PrecisionKeyer")

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 335

Playlist
arc provides an alternative way of getting a BaseControlObject from a ControlObject/Blueprint action.

 void ExecuteSelectedPlaylistRow ()
 Executes the selected row on the playlist.

 void ExecuteSelectedPlaylistRowAndNext ()
 Executes the selected row on the playlist and changes selection to the next row.

 void PreviewSelectedPlaylistRow ()
 Previews the selected row on the playlist.

 BaseAction GetSelectedPlaylistRowAction ()
 Returns the action that's attached to the selected row on the playlist.

 void SetSelectedPlaylistRow (params string[] path)
 Tries to find the row at path (path should contain a string per depth level) and makes it the selected

row.
 void PlayPlaylistByName (string tabName)

 Highlights the playlist with the name tabName, and plays it from the beginning.
 void PlayPlaylistByIndex (int tabIndex)

 Highlights the playlist with 0-based index tabIndex, and plays it from the beginning.
 void StopPlaylist ()

 Stops the currently playing playlist.
 void ChangePlaylistTab (string tabName)

 Selects and highlights the playlist with the name tabName.

Playlist Example

// Selects the row at "StatsDisplayGroup/AwayTeam/Show" and then previews and
executes it.
SetSelectedPlaylistRow("StatsDisplayGroup", "AwayTeam", "Show")
PreviewSelectedPlaylistRow()
ExecuteSelectedPlaylistRowAndNext()

Control Object
arc provides an alternative way of getting a BaseControlObject from a ControlObject/Blueprint action.

 BaseControlObject GetControlObject (ControlObjectAction action, string id)
 Returns the control object with a specific ID from ControlObject action.

Getting a Specific ControlObject from a ControlObjectAction

// Get the ControlObject Action
var MatchDayAction = GetAction("MatchdayTable")
// Get Title ControlObject (ControlText) and change its value
GetControlObject(Co, "Title").Value = "Sunday Fixtures"

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 336

// Get the Blueprint Action
var HeadlineBp = GetAction("HeadlineBp")
// Get Title ControlObject (String Variable) and change its value
GetControlObject(HeadlineBp, "Title").Value = "Lorem Ipsum"

MIDI
Attached and configured MIDI devices can be used to receive MIDI events using the OnMIDIEvent callback. It's also
possible to send MIDI events to an attached device using the following methods:

 bool SendMIDIControlMessage (string DeviceName, int Channel, int Number, int Value)
 Sends a MIDI control message to a the device named DeviceName, using Channel, Number and Value.

 bool SendMIDINoteMessage (string DeviceName, bool On, int Channel, int Note, int Velocity)
 Sends a MIDI note message to a the device named DeviceName, using Channel, Note and Velocity.

The parameter On determines whether the event is a note on or note off event.

MIDI Sample

Global.OnButtonPressed = function (id)
{
 SendMIDIControlMessage("Midi Fighter Twister", 1, 1, 127) // send control message
to Midi Fighter Twister on channel 1, number 1, value 127
 SendMIDINoteMessage("nanoPAD2", true, 1, 5, 100) // send note down event to
nanoPAD2 device
}

Global.OnMIDIEvent = function (midiEvent)
{
 // just print the midi event on the console
 Console.WriteLine("midi event |" + midiEvent.DeviceName + "| " +
midiEvent.EventType + "\n" + midiEvent.ToString())
}

Art-Net DMX
A sample on how to use the OnDMXEvent callback in a template or global script.

Art-Net Script Sample

Global.OnDMXEvent = function (dmxEvent)
{
 Console.WriteLine("Universe " + dmxEvent.Universe + " first change at channel " +
dmxEvent.firstDiff)
 Console.WriteLine("Channel 7 has changed: " + dmxEvent.HasChanged(7))

Note: Both of the methods above return true on successful completion and false if not successful.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 337

 Console.WriteLine("Channel 7 value is: " + dmxEvent.DMXData[7])
}

You can enable or disable the DMX signals using the following methods

 void EnableDMX ()
Enables callbacks of the connected Art-Net devices to be sent to connected actions and script callbacks.

 void DisableDMX ()
Disables callbacks of the connected Art-Net devices to be sent to connected actions and script callbacks.

 bool IsDMXEnabled ()
Returns whether the Art-Net callbacks are enabled.

MQTT
Message Queuing Telemetry Transport is supported through the possibility to instantiate a MQTT client and send/
receive messages

 ArcMqttClient createMQTTClient (string server, int port)
Creates a MQTT client connected using server and port

The returned client ArcMqttClient supports the following methods

 void Subscribe (string topic, int qos = 1)
Subscribes the client to the given topic with the specified quality of service (default 1).

 void Unsubscribe (string topic)
Unsubscribes the client from the given topic.

 void sendMessage (string topic, string payload)
Sends a message payloadto topic.

 void Dispose ()
Disconnects and deletes the client.

Whenever a message is received from a topic a client has subscribed to, the new data is set to the global DataMap
using the topic as key and the payload as value. Payload data in JSON format is passed as a JSON object, anything
else is passed as a string object.

MQTT Sample

var mqttClient

Global.OnInit = function ()
{
 mqttClient = createMQTTClient("localhost", 6548)
 mqttClient.Subscribe("hello/world/news")

 SubscribeDataMap("hello/world/news")
}

Global.OnDataMapValueChanged = function (varName)
{
 if(varName == "hello/world/news")
 Console.WriteLine("breaking news alert: " + GetData(varName))

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 338

}

A sample server written in C# illustrating the server side code using the MQTTnet library.

MQTT Server Sample

using MQTTnet;
using MQTTnet.Extensions.ManagedClient;
using MQTTnet.Server;
using System;
using System.Threading;

namespace testmqtt
{
 class Program
 {
 static void Main(string[] args)
 {
 var optionsBuilder = new MqttServerOptionsBuilder()
 .WithConnectionBacklog(100)
 .WithDefaultEndpointPort(6548);

 var mqttServer = new MqttFactory().CreateMqttServer();
 mqttServer.StartAsync(optionsBuilder.Build());

 int i = 0;
 MqttApplicationMessage message = null;
 while (true)
 {
 message = new MqttApplicationMessageBuilder()
 .WithTopic("hello/world/news")
 .WithPayload("Temperatures below " + i + " !")
 .WithExactlyOnceQoS()
 .Build();

 mqttServer.PublishAsync(message);
 Thread.Sleep(1000);
 Console.WriteLine(i + "");
 i--;
 }
 }
 }
}

RabbitMQ
RabbitMQ is an open-source message broker that enables Viz Arc and other applications to communicate
asynchronously by sending and receiving messages through queues.

Create a client

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 339

 ArcRabbitMqClient createRabbitMQClient(string host, int port = 5672, string username = ‘guest’, string
password = ‘guest’, string virtualHost = '/')
Creates a RabbitMQ client connecting to host on port using credentials username and password while
virtualHost is the virtual host of the broker instance.

The following methods are support on an instance of ArcRabbitMqClient:

 void DeclareQueue(string queueName, bool durable = false, bool exclusive = false, bool autoDelete = false)
 Creates queue if it doesn't exist.

 void ConsumeQueue(string queueName, bool autoAck = true, bool declareQueue = true)
 Starts consuming. Messages are pushed to the DataMap with queueName as key.

 void StopConsuming(string queueName)
 Stops consuming from the specified queue.

 void PublishToQueue(string queueName, string message)
 Publishes message directly to a queue.

 void Publish(string exchange, string routingKey, string message)
 Publishes to an exchange with routing key.

 void Dispose()
 Closes connection and releases resources.

Example usage:

var rmqClient = null;
var QUEUE_NAME = "vizarc_demo_queue";

Global.OnCreated = function() {
 // Create RabbitMQ client - connects to localhost with default credentials
 // Parameters: host, port (default 5672), username (default "guest"),
 // password (default "guest"), virtualHost (default "/")
 rmqClient = createRabbitMQClient("localhost", 5672, "guest", "guest", "/");

 // Declare and start consuming from a queue
 // Messages will be pushed to the DataMap with queue name as the key
 rmqClient.ConsumeQueue(QUEUE_NAME);

 // Subscribe to DataMap to receive messages
 SubscribeDataMap(QUEUE_NAME);

 Console.WriteLine("RabbitMQ client connected and consuming from: " + QUEUE_NAME);
}

Global.OnDestroyed = function() {
 // Clean up when script stops
 if (rmqClient != null) {
 rmqClient.StopConsuming(QUEUE_NAME);
 rmqClient.Dispose();
 rmqClient = null;
 }
 Console.WriteLine("RabbitMQ client disconnected");
}

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 340

// Called when DataMap variable changes (message received)
Global.OnDataMapValueChanged = function(varName) {
 if (varName === QUEUE_NAME) {
 var message = GetData(QUEUE_NAME);
 Console.WriteLine("Received message: " + message);

 // Process the message here
 processMessage(message);
 }
}

function processMessage(message) {
 // Example: Parse JSON message and update a parameter
 try {
 var data = JSON.parse(message);
 if (data.action === "update") {
 SetParameterValue("myTextParam", data.value);
 }
 } catch (e) {
 Console.WriteLine("Message is not JSON: " + message);
 }
}

// Button click handler to publish a test message
Global.OnButtonPressed = function(param) {
 if (param === "btnPublish") {
 var testMessage = JSON.stringify({
 action: "update",
 value: "Hello from VizArc!",
 timestamp: new Date().toISOString()
 });

 // Publish to queue (uses default exchange with queue name as routing key)
 rmqClient.PublishToQueue(QUEUE_NAME, testMessage);
 Console.WriteLine("Published: " + testMessage);
 }
}

Object Tracker
The script exposes some useful functions that allows customization and remoting of the Object Tracker. For
example, the StopTracker and TakeOutTracker function could be used to quickly remove tracking or On Air
graphics.

 int GetActiveTracker ()
 Gets the currently active tracker index (starting from 1).

 int SetActiveTracker (int tracker)
 Sets the currently active tracker index (starting from 1). Returns the active tracker index.

 void TakeTracker ()
 Takes tracker On Air all trackers.

 void TakeOutTracker ()
 Takes tracker Off Air all trackers.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 341

 void PreviewTracker ()
 Previews all trackers.

 void PreviewOutTracker ()
 Removes all trackers from preview.

 void StopTracker ()
 Stops all trackers.

 void StopTracker (int index)
 Stops the tracker with index (starting from 1).

 void ResetPointerOffset(int index)
 Reset the pointer offset for tracker with index (starting from 1).

Viz Arena
The script exposes some useful functions concerning the Viz Arena integration.

 bool DetectArenaCalibration ()
 Redetects the camera calibration (same as the D shortcut in Viz Arena).

 bool ClearArenaCalibration ()
 Clears the camera calibration (same as the BACKSPACE shortcut in Viz Arena).

 bool ClearArenaKeyer ()
 Clears the Keyer mask (same as the C shortcut in Viz Arena).

 string[] GetArenaCameraList ()
 Returns a string-list of available cameras.

 string GetCurrentArenaCamera ()
 Returns the name of the current camera.

 int GetCurrentArenaCameraIndex ()
 Returns the zero based index of the current camera.

 bool IsArenaConnected ()
 Returns whether Viz Arena is running and connected to Viz Arc.

Parameter
All parameters are exposed to the global script and can be accessed via their unique ID.

arc provides an alternative way of getting them.

 BaseParameter GetParameter (string id)
 Gets the parameter identified by the unique id that was input.

It's also possible to get and set a parameter's value directly from arc.

 dynamic GetParameterValue (string id)
 Gets the value of the parameter identified by the unique id that was input. [dynamic] The returned

value's type depends on the parameter type.
 void SetParameterValue (string id, dynamic value)

 Sets the value of the parameter identified by the unique id that was input. [dynamic] Input variable
value can be of any type, see parameters for valid types.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 342

In case you don't want the callback function OnParameterChanged to be triggered when changing a value using
SetParameterValue, you can use SetParameterRawValue. This method does not trigger any calls
to OnParameterChanged.

 void SetParameterRawValue (string id, dynamic value)
 Sets the value of the parameter identified by the unique id that was input. [dynamic] Input variable

value can be of any type, see parameters for valid types.

Buttons are a special case in the sense that they don't hold a value, and therefore have a separate method for
triggering their click.

 void PushParameterButton (string id)
 Triggers a pressed event on the button identified by the unique id that was input.

Parameter Examples

// Setting the value of a bool parameter (id = ShowHighlights) to false
// direct assigment
ShowHighlights.Value = false
// Get parameter via arc and then assign to Value
GetParameter("ShowHighlights").Value = false
// Set Parameter value via arc without interacting with the actual parameter
SetParameterValue("ShowHighlights", false)

// Getting the value of a bool parameter (id = ShowHighlights)
var highlightState = GetParameterValue("ShowHighlights")

// Push LoadFixtures button
PushParameterButton("LoadFixtures")

Channel
arc grants access to Viz Arc profiles. This is useful whenever more precise control is required for communicating
with the Engines.

 ScriptingProfile GetSelectedProfile ()
 Returns the currently selected profile.

 int GetChannelCount ()
 Returns the number of channels on the currently selected profile.

 ScriptingChannel GetChannel (int index)
 Returns the channel at the index position on the currently selected profile.

 ScriptingChannel GetChannel (string channelName)
 Returns the channel named channelName on the currently selected profile.

 ScriptingChannel GetPreviewChannel ()

Note: Button presses trigger the global script's callback OnButtonPressed.

Note: Parameter value changes trigger the global script's callback OnParameterChanged.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 343

 Returns the preview channel of the currently selected profile.
 ScriptingChannel GetProgramChannel ()

 Returns the program channel of the currently selected profile.
 ScriptingChannel GetSelectedChannel ()

 In a template script it returns the currently selected channel of the Template Action.
In the global script it returns the program channel of the currently selected profile.

Channel Handling Examples

// Clear main layer on all channels using GetChannelCount() and GetChannel(int)
for (var i = 0; i < GetChannelCount(); i++) {
 GetChannel(i).SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT")
}

// Send message to VideoWallchannel via GetSelectedProfile () and GetChannel(string)
GetChannel("VideoWall").SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT")
GetSelectedProfile().GetChannel("VideoWall").SendSingleCommand("RENDERER*MAIN_LAYER
SET_OBJECT")

Viz Engine/Unreal Engine Communication
arc provides quick access functions for sending messages to specific channels/Engines.

 void SendSingleCommand (string command, string channelName)
 Sends command to all the Engines in the specified channel channelName.

 void SendMultipleCommands (string[] commands, string channelName)
 Sends all the input commands to all the Engines in the specified channel channelName.

 string GetFromEngine (string command, string channelName)
 Sends command to all the Engines in the specified channel channelName. Returns the answer to the

sent command.
 string GetFromVizEngine (string command)

 Sends command to the currently selected profile's Viz editing Engine. Returns the answer to the sent
command.

 string GetFromUnrealEngine (string command)
 Sends command to the currently selected profile's Unreal editing Engine. Returns the answer to the

sent command.
 string GetFromEngineAsync (string command, string channelName, int timeout = -1)

 Sends command to all the Engines in the specified channel channelName. Returns the answer to the
sent command.
If timeout is specified and larger than 0, the method times out after timeout milliseconds if it does not
receive an answer within that time.

 string GetFromEngineAsync (string command, int timeout = -1)
 Sends command to all the Engines in the specified selected channel of the template. Returns the

answer to the sent command.
If timeout is specified and larger than 0, the method times out after timeout milliseconds if it does not
receive an answer within that time.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 344

 string GetFromVizEngineAsync (string command)
 Sends command to the currently selected profile's Viz editing Engine. Returns the answer to the sent

command.
 string GetFromUnrealEngineAsync (string command)

 Sends command to the currently selected profile's Unreal editing Engine. Returns the answer to the
sent command.

Viz Engine Communication

// Get scene from parameter and set it to Viz Engine main layer
SendSingleCommand(GetParameterValue("MainSceneSelector"), "Main")

// Clear Main, Back and Front layers on channel
var CleanCommands = ["RENDERER*MAIN_LAYER SET_OBJECT", "RENDERER*BACK_LAYER
SET_OBJECT", "RENDERER*FRONT_LAYER SET_OBJECT"]
SendMultipleCommands(CleanCommands, "Viz")

// Query Viz channel and Viz editing engine for the currently loaded scene
GetFromEngine("SCENE SCENE*SCENE GET", "Viz")
GetFromVizEngine("SCENE SCENE*SCENE GET")

The async variants can be used only when using the JavaScript language and have the advantage that they do not
lock up the UI.

Async Samples

Global.OnButtonPressed = async function (id)
{
 if(id == "getVersionButton"){
 const answer = await GetFromEngineAsync("VERSION", "localviz")
 Console.WriteLine("Viz Version is: " + answer)
 }
}

Tracking Hub Command
arc provides quick access functions for sending messages to the configured Tracking Hub.

 void SendSingleTHCommand (string command)
 Sends command to the Tracking Hub (if configured and connected).

 string GetFromTH (string command)
 Sends command to the Tracking Hub (if configured and connected) and returns the answer.

 string GetFromTHAsync (string command)
 The asynchronous version of GetFromTH.

Note: If you use await, the enclosing function needs to be async. You can add this attribute manually in
case you use it within a Viz Arc callback.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 345

SMM Handling

 void SendToSMM (string key, string value, bool doEscape)
 Sends key-value pair to Shared Memory to the first channel of the current profile. doEscape specifies

whether the value string is escaped.
 void SendToSMM (string key, string value, bool doEscape, string channel)

 Sends key-value pair to Shared Memory to all Engines contains in channel. doEscape specifies
whether the value string is escaped.

 void SendToSMM (string key, string value, bool doEscape, string channel, string destination)
 Sends key-value pair to Shared Memory to all Engines contains in channel. doEscape specifies

whether the value string is escaped.
 destination can be either SYSTEM, COMMUNICATION or DISTRIBUTED

The shared memory updates are sent to the UDP or TCP port configured on the target Viz Engine; if both are
configured, it is sent to the UDP port. The Viz Communication Shared Memory map is therefore utilized. You can
read more on Shared Memory configuration in the Profiles section in the Viz Arc User Guide.

SMM Example

// Send to Viz Channel SMM the variable "Target1" with the value from TargetState
SendToSMM("Target1", TargetState.Value, false, "Viz")

// Send to Viz Channel SMM the variable "Target2" with the value "Hello World!".
// The last parameter "DISTRIBUTED" indicates that the value will be propagated to
all engines connected to the same Graphic Hub
SendToSMM("Target2", "Hello World!", false, "Viz", "DISTRIBUTED")

GPI
The connected GPI state can be changed via the arc functionalities:

 void SignalGpiChannel (int channelIndex, bool signalHigh)
 Signals set the GPI channel at channelIndex to either high or low.

The following snippet presents a function that loads a scene to the "Main" channel and signals the GPI:

GetAction Example

function LoadScene()
{
 // Get scene from parameter and set it to Viz Engine main layer
 SendSingleCommand(GetParameterValue("MainSceneSelector"), "Main")
 // Set gpi channel 2 to High
 SignalGpiChannel(2, true)
}

http://documentation.vizrt.com/viz-arc

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 346

Viz Pilot
Viz Pilot data elements can be created from scripting using the method CreatePilotDataElement. There are two ways
to invoke this method:

 async bool CreatePilotDataElement (BaseAction action, string name)
 Creates a Viz Pilot data element of action and name name. The function returns true on success.

 The BaseAction method:
 async bool CreatePilotDataElement (string name)

 Creates a Viz Pilot data element with name name. The function returns true on success.

Global.OnButtonPressed = async function (id)
{
 try{
 if(id == "createpilotButton")
 {
 // use global method
 await CreatePilotDataElement(GetAction("loadSceneA"), "LoadSceneA")
 // use method defined on the BaseAction itself
 await
GetAction("loadSceneA").CreatePilotDataElement("LoadSceneA_fromAction")
 }
 }catch(ex)
 {
 // error handle
 Console.WriteLine("ex " + ex + " " + ex.stack)
 }
}

Timer

 void CreateTimer (string id)
 Creates a timer that can be accessed via its unique id.

 void CreateTimer (string id, int ms)
 Starts a timer that can be accessed via its unique id and has a tick interval of ms.

 void StartTimer (string id, int ms)
 Gets the timer identified by id, sets the tick interval to ms and starts it.

 void StopTimer (string id)
 Gets the timer identified by id and stops it.

The following example creates a timer on the OnInit callback, makes use of two buttons to start/stop the timer and
writes to the console whenever the timer ticks:

Note: GPI must be enabled on the config.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 347

Timer Example

// Timer id
var heartBeatTimerId = "HeartBeat"

Global.OnInit = function ()
{
 // Create timer with id heartBeatTimerId
 CreateTimer(heartBeatTimerId)
}

Global.OnButtonPressed = function (id)
{
 if(id == "TimerStart")
 StartTimer(heartBeatTimerId, 1000)
 else if(id == "TimerStop")
 StopTimer(heartBeatTimerId)
}

// Script callback for timer ticks
Global.OnTimer = function (id)
{
 Console.WriteLine("Timer Tick " + id)
}

JavaScript Timer Functions

Viz Arc provides browser-style timer functions that allow you to execute code after a delay or at regular intervals.
These functions mimic the standard JavaScript timer API found in web browsers, making it familiar for developers
with web development experience.

Overview

The timer functions allow you to:

 Execute code once after a specified delay (setTimeout).

 Execute code repeatedly at fixed intervals (setInterval).

 Cancel pending or repeating timers (clearTimeout , clearInterval).

All timer functions return a unique timer ID that can be used to cancel the timer before it executes.

setTimeout

Executes a function once after a specified delay.

Syntax:

Note: Whenever a timer ticks the global script's callback OnTimer is called.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 348

int setTimeout(function callback, int delay)

Parameters:

 callback : The function to execute after the delay

 delay : Time in milliseconds to wait before executing the function

Returns:

 int : A unique timer ID that can be used with clearTimeout()

Example - Basic Usage:

Global.OnButtonPressed = function (id)
{
 if (id == "delayedAction")
 {
 Console.WriteLine("Action will execute in 3 seconds...")
 setTimeout(function() {
 Console.WriteLine("3 seconds have passed!")
 SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT Scene1", "Main")
 }, 3000)
 }
}

Example - Using Named Functions:

function showGraphic()
{
 Console.WriteLine("Displaying graphic")
 GetSelectedChannel().SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT
SCENE*some/scene/l3rd")
 SetData("lastUpdate", Date().toString())
}

Global.OnButtonPressed = function (id)
{
 if (id == "delayShow")
 {
 setTimeout(showGraphic, 5000) // Show graphic after 5 seconds
 }
}

Example - Storing Timer ID for Cancellation:

var pendingTimerId = null

Global.OnButtonPressed = function (id)
{

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 349

 if (id == "scheduleUpdate")
 {
 // Schedule an update for 10 seconds from now
 pendingTimerId = setTimeout(function() {
 Console.WriteLine("Executing scheduled update")
 GetParameter("StatusText").Value = "Updated"
 }, 10000)

 Console.WriteLine("Update scheduled with timer ID: " + pendingTimerId)
 }
 else if (id == "cancelUpdate")
 {
 if (pendingTimerId != null)
 {
 clearTimeout(pendingTimerId)
 Console.WriteLine("Scheduled update cancelled")
 pendingTimerId = null
 }
 }
}

clearTimeout

Cancels a timer created with setTimeout before it executes.

Syntax:

void clearTimeout(int timerId)

Parameters:

 timerId : The timer ID returned by setTimeout()

Example - Cancelling a Scheduled Action:

var countdownTimer = null

function startCountdown()
{
 Console.WriteLine("Graphics will load in 10 seconds...")
 countdownTimer = setTimeout(function() {
 GetSelectedChannel().SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT
SCENE*Countdown")
 Console.WriteLine("Graphics set!")
 }, 10000)
}

function cancelCountdown()
{
 if (countdownTimer != null)
 {

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 350

 clearTimeout(countdownTimer)
 Console.WriteLine("Countdown cancelled")
 countdownTimer = null
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStart")
 startCountdown()
 else if (id == "btnCancel")
 cancelCountdown()
}

setInterval

Executes a function repeatedly at a fixed time interval until cancelled.

Syntax:

int setInterval(function callback, int interval)

Parameters:

 callback : The function to execute repeatedly.

 interval : Time in milliseconds between each execution.

Returns:

 int : A unique interval ID that can be used with clearInterval() .

Example - Updating a Clock:

var clockIntervalId = null

function updateClock()
{
 var currentTime = new Date().toLocaleTimeString()
 SetParameterValue("ClockDisplay", currentTime)
 SetData("currentTime", currentTime)
}

Global.OnButtonPressed = function (id)
{
 if (id == "startClock")
 {
 // Update clock every second
 clockIntervalId = setInterval(updateClock, 1000)
 Console.WriteLine("Clock started")
 }
 else if (id == "stopClock")

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 351

 {
 if (clockIntervalId != null)
 {
 clearInterval(clockIntervalId)
 Console.WriteLine("Clock stopped")
 clockIntervalId = null
 }
 }
}

Example - Periodic Status Check:

var statusCheckId = null

function checkEngineStatus()
{
 var version = GetFromEngine("VERSION", "Main")
 Console.WriteLine("Engine Status Check: " + version)

 // Update status display
 SetParameterValue("EngineStatus", "Online - " + version)
}

Global.OnCreated = function()
{
 // Check engine status every 30 seconds
 statusCheckId = setInterval(checkEngineStatus, 3000)
}

Example - Animation Loop:

var animationId = null
var counter = 0

function animateCounter()
{
 counter++
 SetParameterValue("CounterValue", counter)

 // Stop after reaching 100
 if (counter >= 100)
 {
 clearInterval(animationId)
 Console.WriteLine("Animation complete")
 animationId = null
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "startAnimation")

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 352

 {
 counter = 0
 animationId = setInterval(animateCounter, 50) // Update every 50ms
 }
}

clearInterval

Cancels a repeating timer created with setInterval .

Syntax:

void clearInterval(int intervalId)

Parameters:

 intervalId : The interval ID returned by setInterval()

Example - Starting and Stopping a Refresh Loop:

var refreshId = null

function refreshData()
{
 Console.WriteLine("Refreshing data from API...")
 // Fetch and update data here
 var timestamp = Date().toString()
 SetData("lastRefresh", timestamp)
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStartRefresh")
 {
 if (refreshId == null)
 {
 refreshData() // Execute immediately
 refreshId = setInterval(refreshData, 5000) // Then every 5 seconds
 Console.WriteLine("Auto-refresh enabled")
 }
 }
 else if (id == "btnStopRefresh")
 {
 if (refreshId != null)
 {
 clearInterval(refreshId)
 refreshId = null
 Console.WriteLine("Auto-refresh disabled")
 }
 }

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 353

}

Best Practices

1. Always Store Timer IDs

// Good - can be cancelled later
var timerId = setTimeout(myFunction, 1000)

// Avoid - cannot be cancelled
setTimeout(myFunction, 1000)

2. Avoid Memory Leaks

var updateInterval = null

Global.OnButtonPressed = function (id)
{
 if (id == "startUpdates")
 {
 // Clear existing interval before creating a new one
 if (updateInterval != null)
 clearInterval(updateInterval)

 updateInterval = setInterval(updateFunction, 1000)
 }
}

3. Handle Long-Running Intervals

var pollCount = 0
var pollId = null

function pollAPI()
{
 pollCount++

 // Implement a maximum number of attempts
 if (pollCount > 100)
 {
 clearInterval(pollId)
 Console.WriteLine("Polling stopped after 100 attempts")
 return
 }

 // Your polling logic here
 Console.WriteLine("Polling... attempt " + pollCount)
}

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 354

pollId = setInterval(pollAPI, 100)

Complete Example - Countdown Timer

var countdownValue = 10
var countdownId = null

function countdown()
{
 if (countdownValue > 0)
 {
 SetParameterValue("CountdownDisplay", countdownValue.toString())
 Console.WriteLine("Countdown: " + countdownValue)
 countdownValue--
 }
 else
 {
 // Countdown finished
 clearInterval(countdownId)
 countdownId = null

 SetParameterValue("CountdownDisplay", "GO!")
 Console.WriteLine("Countdown complete!")

 // Execute action after countdown
 SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT LaunchGraphic", "Main")
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStartCountdown")
 {
 countdownValue = 10
 countdown() // Show initial value immediately
 countdownId = setInterval(countdown, 1000) // Then update every second
 }
 else if (id == "btnStopCountdown")
 {
 if (countdownId != null)
 {
 clearInterval(countdownId)
 countdownId = null
 Console.WriteLine("Countdown stopped")
 }
 }
 else if (id == "btnResetCountdown")
 {
 if (countdownId != null)
 {
 clearInterval(countdownId)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 355

 countdownId = null
 }
 countdownValue = 10
 SetParameterValue("CountdownDisplay", countdownValue.toString())
 }
}

Performance Considerations

Recommended Intervals

// BAD
setInterval(heavyOperation, 10)

// GOOD
setInterval(lightUpdate, 100) // Light: 100ms minimum
setInterval(apiCall, 1000) // Heavy: 1 second minimum
setInterval(polling, 5000) // Polling: 5+ seconds

Best Practices

Limit Active Timers (< 15 per template)

// Multiple timers
for (var i = 0; i < 10; i++) setInterval(update, 1000)

// Single timer
var i = 0
setInterval(function() { update(i++ % 10) }, 1000)

Use setTimeout for Slow Operations

// Overlapping calls
setInterval(slowAPICall, 2000) // Takes 3 seconds!

// Wait for completion
function poll() {
 slowAPICall()
 setTimeout(poll, 2000)
}

Quick Checklist

 Intervals ≥ 100ms (1000ms+ for heavy operations)
 Keep total timers under 15

Warning: Too many timers or short intervals can cause UI freezing and performance issues.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 356

 Callbacks faster than interval duration

Notes

 These functions mimic the standard JavaScript timer API found in web browsers, making them familiar to
web developers

 All timers are automatically cleaned up when the script is stopped or reloaded
 Timer callbacks are executed on the UI thread for safe interaction with Viz Arc parameters and UI elements
 Delays and intervals are specified in milliseconds (1000ms = 1 second)
 If an error occurs in a setInterval callback, the interval is automatically stopped to prevent repeated

errors

StreamDeck
Any connected StreamDeck that is configured to be used exclusively with arc, can have its buttons customized
using one of the following methods:

 void SetStreamdeckKey (int key, string label, int fontSize)
 Baseline version, sets streamdeck key at key index image to a black square with label text of fontSize

size.
 void SetStreamdeckKey (int key, string label, int fontSize, string imageFullPath)

 Same as the baseline version but instead of a black block it sets a local image (at imageFullPath) as
background. imageFullPath can be either a local file system path or a Graphic Hub path.

 void SetStreamdeckKey (int key, string label, int fontSize, int r, int g, int b)
 Same as the baseline version but instead of black it uses an RGB color as background.

 void SetStreamdeckKey (int key, string label, int fontSize, int r, int g, int b, string imageName)
 Same as baseline version using background color r, g, b and imageName on top of the background

color (in case the image contains an alpha channel).
 void SetStreamdeckKey (int key, string label, int fontSize, string horAlignment, string vertAlignment, string

textAlignment, int r, int g, int b, string imageName)
 Same as the previous version, where text is horAlignment aligned horizontally, vertically

by vertAlignment and the text itself is centerd through textAlignment.
 horAlignment can be either "Left", "Center" or "Right"
 vertAlignment can be either "Top", "Center" or "Bottom"
 textAlignment can be either "Left", "Center" or "Right"

Any key can have its contents cleared with the following method:

 void ClearStreamdeckKey (int key)
 Clears the content of the Streamdeck key at key index

StreamDeck Key Configuration Example

function SetupStreamDeck()
{
 // Key 0: Black background, size 20 "Clear" text
 SetStreamdeckKey(0, "Clear", 20)
 // Key 1: Image background, size 20 "Load AR" text

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 357

 SetStreamdeckKey(1, "Load AR", 20, "D:/Soccer/Images/ARThumbnail.png")
 // Key 2: Blue background, size 20 "Continue" text
 SetStreamdeckKey(2, "Continue", 20, 0, 0, 255)
 // Key 3: Gray background, using headshot from Graphic Hub (image may contain an
alpha channel)
 SetStreamdeckKey(3, " ", 20, 100, 100, 100, "IMAGE*/Default/MasterImages/
headshot_0123")
 // Key 4: Gray background, using headshot from Graphic Hub (image may contain an
alpha channel), Text "John Doe" is top left aligned
 SetStreamdeckKey(4, "John Doe", 20, "Left", "Top", "Left", 100, 100, 100,
"IMAGE*/Default/MasterImages/headshot_0123")
}

Global.OnInit = function () {
 // Clean first 3 keys
 ClearStreamdeckKey(0)
 ClearStreamdeckKey(1)
 ClearStreamdeckKey(2)

 SetupStreamDeck()
}

Another sample that prints some useful information using the external StreamDeck plugin.

function printSDEvenyInfo(sdEvent)
{
 // print all the available information for a StreamDeck event
 Console.WriteLine("StreamDeck Event Info:")
 Console.WriteLine("Event Type: " + sdEvent.EventType)
 Console.WriteLine("Device Index: " + sdEvent.DeviceIndex)
 Console.WriteLine("Device ID: " + sdEvent.Id)
 Console.WriteLine("Column: " + sdEvent.XKey)
 Console.WriteLine("Row: " + sdEvent.YKey)
 Console.WriteLine("Payload: " + sdEvent.Payload)

 // if it's a dial or touch event print additional info
 // for StreamDeck + devices only
 if(sdEvent.hasOwnProperty("Ticks"))
 Console.WriteLine("Ticks: " + sdEvent.Ticks)
 if(sdEvent.hasOwnProperty("TapPosX"))
 Console.WriteLine("TapPosX: " + sdEvent.TapPosX)
 if(sdEvent.hasOwnProperty("TapPosY"))
 Console.WriteLine("TapPosY: " + sdEvent.TapPosY)
}

Global.OnStreamDeckTouchTap = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckDialRotate = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 358

}
Global.OnStreamDeckDialDown = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckDialUp = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckKeyDown = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckKeyUp = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}

Graphic Hub REST
arc provides some methods that allow to retrieve information about the current Graphic Hub REST server in use. It
is meant to help using the Graphic Hub REST interface directly.

 string GetGHHost ()
 Returns the Graphic Hub REST host name (for example, localhost or 10.81.44.71).

 string GetGHPort ()
 Returns the Graphic Hub REST port (for example, 19398).

 string GetGHConnectionString ()
 Returns the complete connection string based on the configured Host and Port (for example, http://

localhost: 19398).
 string GetGHUser ()

 Returns the Graphic Hub REST user name (for example, Guest or Admin).
 string GetGHAuthenticationValue ()

 Returns the base64 authentication string which is a combination of the user name and password (for
example, QWRtaW46Vml6RGI=).

 bool ImportArchive (string path)
 Import a via archive through the REST service. Beware that all assets in the via override the content’s

of the Graphic Hub. Returns true on success and false on failure.
 async Task<bool> ImportArchiveAsync (string path)

 Async version of the above method.

Below is a code sample that fetches all the image names of a given Graphic Hub path using the
GetGHConnectionString and GetGHAuthenticationValue functions.

Sample

function getFolderId(path)
{

http://localhost

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 359

 let folderId = ""
 let request = new XMLHttpRequest()

 request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 //Console.WriteLine("respones: " + request.responseText)

 xmlDoc = new XmlDocument()
 xmlDoc.LoadXml(request.responseText)
 //Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

 // create namespace manager
 nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
 // add namespace
 nsmgr.AddNamespace("x", "http://www.w3.org/2005/Atom")

 // search for x:model
 root = xmlDoc.DocumentElement
 folderId=root.SelectSingleNode("/x:feed/x:entry/x:id",
nsmgr).InnerXml.split(':')[2]
 Console.WriteLine("folder id " + folderId)
 }
 }
 request.open("GET", GetGHConnectionString()+"/translator/?path="+path, true)
 request.setRequestHeader("Authorization", "Basic " + GetGHAuthenticationValue())
 request.send();

 // fetch the images using the folder uuid
 GetImagesOfFolder(folderId)
}

function GetImagesOfFolder(folderId)
{
 let request = new XMLHttpRequest()

 request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 //Console.WriteLine("respones: " + request.responseText)

 xmlDoc = new XmlDocument()
 xmlDoc.LoadXml(request.responseText)
 //Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

 // create namespace manager
 nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
 // add namespace
 nsmgr.AddNamespace("x", "http://www.w3.org/2005/Atom")

 // search for nodes 'entry'
 root = xmlDoc.DocumentElement
 imageNodes=root.SelectNodes("/x:feed/x:entry", nsmgr)
 //Console.WriteLine("nodes " + imageNodes.Count)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 360

 let imageList = []

 for(node of imageNodes)
 {
 Console.WriteLine("image " + node.SelectSingleNode("./x:title",
nsmgr).InnerXml)
 imageList.push(node.SelectSingleNode("./x:title", nsmgr).InnerXml)
 }
 // set the dropdown
 // imagesDD.SetItems(imageList)
 }
 }
 request.open("GET", GetGHConnectionString()+"/files/" + folderId + "/?
term=IMAGE", true)
 request.setRequestHeader("Authorization", "Basic " + GetGHAuthenticationValue())
 request.send()
}

Other functions relative to the Graphic Hub:

 async Task<string[]> GetImages(path)
 Returns a string list of images in the Graphic Hub.

async function fetchImages(path)
{
 Console.WriteLine("fetching images in " + path)

 const results = await GetImages(path).then(results =>
 {
 dropdown_0.SetItems(results)
 })
}

Global.OnButtonPressed = function (id)
{
 if(id == "button_0")
 {
 dropdown_0.Clear()
 fetchImages("sports/soccer/headshots")
 }
}

The above code snippet populates a dropdown with the image names contained in the Graphic Hub path sport/
soccer/headshots.

DataMap
arc provides an interface (get and set) for interacting with Viz Arc's DataMap:

 dynamic GetData (string varName)
 Returns the value belonging to the variable named varName. [dynamic] Returned value depends on

what was set to varName.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 361

 void SetData (string varName, dynamic value)
 Inserts (or overwrites if varName already exists) the key:value pair into Viz Arc's DataMap. [dynamic]

Input value can be of any type.
 bool HasData (string varName)

 Returns true if varName exists in the DataMap.
 bool DeleteDataMapKey(string varName)

 Removes a variable from the DataMap. Returns true if the key existed and was deleted.
 void SubscribeDataMap (string variableName)

 Subscribes to a specific key (Empty string subscribes to all changes). The subbed variables feedback
triggers the script callback "OnDataMapValueChanged".

 void UnsubscribeDataMap (string variableName)
 Unsubscribes from a specific key (Empty string unsubscribes to all changes).

 string[] GetDataKeys ()
 Returns a complete list of all DataMap key entries.

DataMap Example

Global.OnInit = function ()
{
 // make sure OnDataMapValueChanged is called when "someData" changes
 SubscribeDataMap("someData")

 // use blank string to subscrive to all DataMap changes
 //SubscribeDataMap("")

 // create a timer that triggers every second
 CreateTimer("aTimer")
 StartTimer("aTimer", 1000)
}

// Callback for DataMap changes
Global.OnDataMapValueChanged = function (varName)
{
 if(varName == "someData")
 UpdateSomeData(GetData(varName))
}

function UpdateSomeData(theData)
{
 // do something here
 Console.WriteLine("new data " + theData)
}

Global.OnTimer = function (id)
{
 // generate some fresh data using the current time for testing
 // such that OnDataMapValueChanged gets called
 if(id == "aTimer")
 SetData("someData", Date.now())

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 362

}

function printDataMap()
{
 var keys = GetDataKeys()

 for(k of keys)
 Console.WriteLine(k + " = " + GetData(k))
}

NDI
arc provides an interface to handle metadata feedback from NDI sources.

 string[] GetNDISourceList ()
 Returns an array with all the names of the available NDI sources.

 string[] GetNDIPTZSourceList ()
 Returns an array with all the names of the available NDI sources with PTZ control capabilities.

 bool SubscribeNdiSourceMetadata (string source)
 Subscribes to the metadata feedback on the NDI source identified by the provided source input. The

feedback is sent to the datamap with key equal to the source name. Returns true on success, false
otherwise.

 bool UnsubscribeNdiSourceMetadata (string source)
 Unsubscribes the NDI feedback. Returns true on success, false otherwise.

 bool SendNDIMetadata (string name, string XMLString)
 Sends a XMLString to a source identified by name. Returns true on success, false otherwise.

DataMap Example

Global.OnInit = function ()
{
 // Get a list of available NDI sources (can take some time to update)
 var sources = GetNDISourceList()

 // subscribe to metadata changes on a ndi stream
 SubscribeNdiSourceMetadata("NEWTEKPTZ (Channel 1)")

 // metadata will be written into the DataMap, so register to the DataMap changes
also
 SubscribeDataMap("NEWTEKPTZ (Channel 1)")
}

Global.OnDataMapValueChanged = function (varName)
{
 Console.WriteLine(varName + " changed")

Note: Whenever a DataMap variable changes the global script's callback OnDataMapValueChanged is
called.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 363

 // NDI metadata is typically in xml format
 Console.WriteLine(GetData(varName).ToString())
}

Global.OnParameterChanged = function (id)
{
 if(id == "sendMetadata")
 {
 SendNDIMetadata("NEWTEKPTZ (Channel 1)", "<?xml version='1.0' encoding='UTF-8'?
><camera_control><command group_id='0' parameter_id='3' value='0.43'></
camera_control>")
 }
}

File Handling

 string ReadTextFile (string filename, string encoding = "UTF8")
 Returns a encoding encoded string containing the whole content of the text file.

 bool WriteTextFile (string FullPath, string data, string encoding = "UTF8")
 Writes a file at FullPath with its content equal to the encoded input data.

File Handling Example

// Get the StartList file content from the directory defined by the Directory
parameter "WorkingDir"
ReadTextFile(WorkingDir.Value + "\\StartList.json")

// Write the results to the directory defined by the Directory parameter "WorkingDir"
WriteTextFile(WorkingDir.Value + "\\RaceResults.json", results)

Logging

 bool AddLog (string fileName, string content)
 Appends content to fileName, and returns true on success, false otherwise. If the file fileName does

not exist, it is created.

// register data map changes somewhere (e.g. SubscribeDataMap(""))
Global.OnDataMapValueChanged = function (varName)
{
 AddLog("c:/tmp/templateLog.txt", "getting data " + varName + " = " +
GetData(varName))
}

Valid encodings: "UTF8", "ASCII", "BigEndianUnicode", "Default" [System defined encoding], "UTF32",
"UTF7"

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 364

The produced log file content contains entries as the example below:

2025/07/08 19:20:34.1389|getting data TIMECODE = 02:55:59:43

JSON

 dynamic ParseJson (string data)
 Deserializes the input data and returns a JSON object if successful.

On the returned JSON object you can access the members directly using their name. Use the "ToString()" method
on any of the objects to convert them to strings.

var json = ParseJson("{time: '1994-11-05T13:15:30Z', title: 'Viz Arc', subtitle:
'Vizrt', messageId: 1}")
Console.WriteLine("the whole json " + json.ToString())
Console.WriteLine("the title is " + json.title.ToString())

When using the V8 Scripting Engine the built-in JSON.parse and JSON.stringify methods can be used

var json = JSON.parse('{"time": "1994-11-05T13:15:30Z", "title": "Viz Arc",
"subtitle": "Vizrt", "messageId": 1}')
Console.WriteLine("the whole json " + JSON.stringify(json))
Console.WriteLine("the title is " + json.title)

Excel

 string convertXLSToCSV (string excelFilePath, string csvOutputFile, string separator = "\t", int
worksheetNumber = 1)

 Converts an existing .xls file excelFilePath to a comma separated CSV file csvOutputFile usign
separator (default tab separator) and using worksheet number worksheetNumber (1 default being the
first worksheet in the Excel file).

 On successful conversion the function returns the CSV output as a string.
 string convertXLSToCSVString (string excelFilePath, string separator = "\t", int worksheetNumber = 1)

 Converts an existing .xls file excelFilePath to a comma separated CSV string using separator (default
tab separator) and using worksheet number worksheetNumber (1 default being the first worksheet in
the Excel file).

 On successful conversion the function returns the CSV output as a stirng.
 void convertXLSToCSVDataMap (string excelFilePath, string dataMapPrefix, string separator = "\t", int

fromSheet = 1, int toSheet = -1)
 Converts an existing .xls file excelFilePath to a comma separated CSV file csvOutputFile usign

separator (default tab separator) and using an optional range of worksheets. When toSheet is -1 it
converts all worksheets. The resulting worksheets are written into the DataMap using the specified
prefix in dataMapPrefix. The name of the worksheet is written to the DataMap key
dataMapPrefix<name>_<index>.

let separator = ";"

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 365

// convert excel to CSV file, use ; as separator and read the second sheet
convertXLSToCSV("c:/tmp/ExcelData.xlsx", "c:/tmp/ExcelData.csv", separator, 2)
// read the whole csv file into a string
var fileContent = ReadTextFile("c:/tmp/ExcelData.csv")
var EntryArr = fileContent.split("\n")

// First line is for the headers, ignore it
for(i = 0; i < EntryArr.length; i++)
{
 // split the row
 var spl = EntryArr[i].split(separator)
 if(spl.length <= 1)
 continue;

 Console.WriteLine("row " + i + ":")

 // print colums one by one separated by a whitespace
 for(entry of spl)
 Console.Write(entry.trim() + " ")

 Console.WriteLine("")
}

// another writing all worksheets to the DataMap, use separator ","
convertXLSToCSVDataMap("c:/tmp/ExcelData.xlsx", "excelData_", ",")

How the resulting DataMap might look like after calling convertXLSToCSVDataMap when the excel file contains just
one worksheet.

Callbacks

 OnParameterChanged (string parameterID)
 Called whenever a parameter (except button and table) changes. parameterID is the ID of the

parameter that triggered the callback.
 OnButtonPressed (string buttonName)

 Called when a parameter button is pressed. buttonName is the ID of the button that triggered the
callback.

 OnMiddleButtonPressed (string buttonName)
 Called when a button is pressed with the middle mouse button. buttonName is the ID of the button

that triggered the callback.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 366

 OnRightButtonPressed (string buttonName)
 Called when a button is pressed with the middle mouse button. buttonName is the ID of the button

that triggered the callback.
 OnTimer (string timerID)

 Called when a timer ticks (completes a cycle). timerID is the ID of the timer that triggered the
callback.

 OnDataMapValueChanged (string varName)
 Called whenever a DataMap variable changes. varName is the ID of the variable that was changed.

 OnStreamDeckKey (string key)
 Called whenever a StreamDeck button is pressed. key indicates the index of the pressed button.
 This callback is used in conjunction with the internal Stream Deck integration

The following StreamDeck callbacks are used with the external Stream Deck integration:

 OnStreamDeckKeyUp (sdEvent)
 Called whenever a Stream Deck button has been released.
 sdEvent contains the following fields:

 string EventType (the event type, for example, "keyUp")
 string Id (the unique ID of the device)
 int DeviceIndex (the index assigned to this device)
 int XKey (the column index of the key)
 int YKey (the row index of the key)
 string Payload (the user defined payload)

 OnStreamDeckKeyDown (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialUp (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialDown (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialRotate (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp and additionally:

 int Ticks positive number for clockwise rotation and negative for anticlockwise rotation.
Minimum value is 1 and increases when doing fast movementes.

 OnStreamDeckTouchTap (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp and additionally:

 int TapPosX number from 0 to 200 (on Stream Deck + device) representing the horizontal
touch position

 int TapPosY number from 0 to 100 (on Stream Deck + device) representing the vertical touch
position

 OnMidiEvent (midiEvent)
 Called whenever a midi event is registered on one of the attached and configured midi devices.
 midiEvent contains the following fields:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 367

 string DeviceName (the name of the device triggering the midi event.
 string EventType (either "ControlChange", "NoteOn" or "NoteOff").
 int Channel (the control channel of the event).
 int Number (the control number of the event).
 int Value (the value of the event, in the range [0..127]).
 int Note (the note of the event in case EventType is NoteOn or NoteOff).
 int Velocity (the velocity of note event in case EventType is NoteOn or NoteOff).

 OnDMXEvent (dmxEvent)
 Called whenever a dmx lighting value changes
 dmxEvent contians the followinf fields:

 short Universe (the Univers ehtat changed)
 byte[] DMXData (the entire 512 byte long data array)
 byte[] change (a 512 byte long array containing information about channel changes)
 int firstDiff (the index of the first channel that changed)

 bool HasChanged(int index)
Call this function to check whether a certain channel has changed

 Table Callbacks
 OnTableColumnsChanged (string tableID)

 Called whenever a table parameter's columns change in number. tableID is the ID of the table
that triggered the callback.

 OnTableRowsChanged (string tableID)
 Called whenever a table parameter's rows change in number. tableID is the ID of the table that

triggered the callback.
 OnTableCellValueChanged (string tableID, int row, int column, BaseBlock cell)

 Called whenever a table parameter's cell changes value. tableID is the ID of the table that
triggered the callback. row and column indicate the position of the cell within the caller table
parameter. cell is the cell object that was changed. Users can interact directly with it. When
Trigger on live changes is enabled on the table property, this callback is called also while
editing the cell, if not the callback is called when keyboard focus is lost on the edited cell.

Video Output Callbacks

 OnVideoMouseLeftButtonDown (Point point)
 Invoked when the left mouse button is pressed on the preview output. point.X and point.Y are

normalized coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.
 OnVideoMouseRightButtonDown (Point point)

 Invoked when the right mouse button is pressed on the preview output. point.X and point.Y are
normalized coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.

 OnVideoMouseMove (Point point)
 Invoked when the right mouse moves on the preview output. point.X and point.Y are normalized

coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.
 OnVideoMouseWheel (double delta)

 Invoked when the mouse wheel is turned on the preview output. delta is a floating point typically
being -120/120 depending on the direction of the wheel turn and the hardware connected.

 OnVideoKeyDown (char charKey, uint rawKey, KeyEventArgs eventArgs)
 Invoked when a keyboard down event has taken place on the preview output. charKey contains the

actual character of the pressed key, rawKey is the numeric representation of the pressed key and

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 368

eventArgs is a System.Windows.Input.KeyEventArgs instance from the operating system representing
the raw event information.

Exposed Objects

Console

 void Write (string message)
 Writes the message to the scripting console.

 void WriteLine (string message)
 Writes the message to the scripting console followed by a new line.

MessageBox

 void Show (string message)
 Shows a message box with its content equal to message.

 void Show (string message, string title)
 Shows a message box with titled title and with its content equal to message.

File Handling Example

// Log an error and show a message to the user
Console.WriteLine("Unable to load data")
MessageBox.Show("Unable to load data", "Load Error")

XmlDocument

XmlDocument allows you to read XML files or strings and aggregate data using XPath. Read more about
XMLDocument and other classes here.

// create XmlDocument and load a xml from disc
xmlDoc = new XmlDocument()
xmlDoc.Load("C:/tmp/TestData.xml")
Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

// create namespace manager
nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
// add namespace
nsmgr.AddNamespace("x", "http://www.contoso.com/books")

// search for book nodes under the books node
root = xmlDoc.DocumentElement
nodeList=root.SelectNodes("/x:books/x:book", nsmgr)

Info: When Viz Arc’s log level is set to TRACE, the strings sent to Write and WriteLine are also logged in the
global log file.

https://learn.microsoft.com/en-us/dotnet/api/system.windows.input.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument?view=net-6.0

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 369

Console.WriteLine("books " + nodeList.Count)

for(var book of nodeList)
 Console.WriteLine("ISBN: " + book.GetAttribute("ISBN") + " title: " +
book.SelectSingleNode("./x:title", nsmgr).InnerXml)

The content of the sample test file C:/tmp/TestData.xml might look like this:

<?xml version="1.0" encoding="utf-8"?>
<books xmlns="http://www.contoso.com/books">
 <book genre="novel" ISBN="1-861001-57-8" publicationdate="1823-01-28">
 <title>Pride And Prejudice</title>
 <price>24.95</price>
 </book>
 <book genre="novel" ISBN="1-861002-30-1" publicationdate="1985-01-01">
 <title>The Handmaid's Tale</title>
 <price>29.95</price>
 </book>
 <book genre="novel" ISBN="1-861001-45-3" publicationdate="1811-01-01">
 <title>Sense and Sensibility</title>
 <price>19.95</price>
 </book>
</books>

XMLHttpRequest

With the XMLHttpRequest class you can fetch data from a remote server. Below is a sample that fetches
asynchronously JSON data from a server.

var request = new XMLHttpRequest()

request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 Console.WriteLine("we are here")

 var json = JSON.parse(request.responseText)

 Console.WriteLine(JSON.stringify(json))

 for (elem of json)
 Console.WriteLine(elem.name)
 }
}
request.open("GET", "https://jsonplaceholder.typicode.com/users", true)
request.setRequestHeader("Content-Type", "application/json") // make sure the
request header is set AFTER calling open
request.send()

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 370

xlAppType

This type allows you to read Excel sheets directly.

FSO

The FSO object allows you to read, create and write files.

 OpenTextFile (filename, [iomode, [create, [format]]])
 iomode can be one of the following: IOMode.ForReading, IOMode.ForWriting, IOMode.ForAppending
 format can be of the following: Tristate.TristateUseDefault (system default), TriState.TristateTrue

(Unicode), TriState.TristateFalse (ASCII).

Reading a UTF8 Encoded Text File

var file = new FSO()
var stream = file.OpenTextFile("d:/testexport.txt")
// or
var stream = file.OpenTextFile("d:/testexport.txt", IOMode.ForReading, false,
Tristate.TristateTrue)

Console.WriteLine(stream.ReadAll())

xHost
The xHost object gives you access to virtually any .NET resource.

V8 Script Sample

var List = xHost.type('System.Collections.Generic.List')
var DayOfWeek = xHost.type('System.DayOfWeek')
var week = xHost.newObj(List(DayOfWeek), 7)
week.Add(DayOfWeek.Sunday)

You can even import entire assemblies:

Prevent Caching
It is possible that requests through XMLHttpRequest get cached and the results of the queries might seem
outdated. In order to prevent caching you can add a random number as parameter of the request.
request.open("GET", "https://jsonplaceholder.typicode.com/users?

dummy="+Date.now(), true)
In this case a dummy parameter is assigned with the current EPOCH date in milliseconds.

Note: This object only works if there is a local Excel installation on the same machine where Viz Arc is
running.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 371

V8 Enumerate Files in Directory

var clr = xHost.lib('mscorlib', 'System', 'System.Core', 'System.IO')
dropdown_0.Clear()
var dir = clr.System.IO.Directory
dropdown_0.SetItems(dir.GetFiles('c:\\tmp'))

// another sample that starts an external process "calc.exe"
var proc = xHost.lib('System.Diagnostics.Process')
proc.System.Diagnostics.Process.Start("calc.exe")

In the example above, a UI dropdown element named dropdown_0 is populated with a file list contained in c:\tmp
using .NET System.IO.Directory class instance.

Another example is how to convert a XML into JSON using the Newtonsoft library:

// get the library handle
var NewtonsoftLib = xHost.lib('Newtonsoft.Json')
// get a reference to the JsonConvert class
var JsonConvert = NewtonsoftLib.Newtonsoft.Json.JsonConvert

function convertXMLToJSON(fileName)
{
 // error checking omitted for clarity
 // read xml document from disc:
 let xmlDoc = new XmlDocument()
 xmlDoc.Load(fileName)

 // set the raw XML data into the DataMap
 SetData("infoXML", xmlDoc.InnerXml)

 // use C# Newtonsoft XML serializer
 let jsonOut = JsonConvert.SerializeXmlNode(xmlDoc)

 // set the converted json into the DataMap
 SetData("infoJson", jsonOut)
}

Performance
The performance object provides access to performance-related information.

 now ()
 Returns a floating point value of the EPOCH time in milliseconds.

 sleep (milliseconds, precise)
 Sleep for a certain amount of milliseconds. Set precise to true when a high precision timer is

required.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 372

let timeA = Performance.now()
Performance.sleep(500, true) // high perf sleep half second
// do something else
let timeB = Performance.now()

Console.WriteLine("timeA " + timeA)
Console.WriteLine("timeB " + timeB)
Console.WriteLine("time difference " + (timeB- timeA) + " ms")

Garbage Collection
Especially for long running scripts it might be useful to force calling the garbage collector from script.

 void ForceGarbageCollection(bool collectHostItems)
 Calls the .NET garbage collector and frees unreferenced memory. Set collectHostMemeory to true for

a more aggressive cleanup including the collection of script internal objects.

Garbage collection usually is triggered automatically. In some cases it might be useful to force garbage collection to
control memory usage. Note that the garbage is always collected when stopping a script or when loading a new
project.

SQL Sample
If you know the assembly name of a specific type, you can instantiate it using xHost.type(name, assemblyName)
method.

var queryString = "SELECT * FROM someTable"
var connetionString = "Server=192.168.1.42,1433;UID=aUserID;PWD=SomePassword;"

// get types using xHost.type
var SqlConnection = xHost.type('System.Data.SqlClient.SqlConnection',
'System.Data.SqlClient')
var SqlCommand = xHost.type('System.Data.SqlClient.SqlCommand',
'System.Data.SqlClient')
var SqlDataReader = xHost.type('System.Data.SqlClient.SqlDataReader',
'System.Data.SqlClient')

connection = new SqlConnection(connetionString)
connection.Open()
var command = new SqlCommand(queryString, connection)
var reader = command.ExecuteReader()
// do something with the data
while (reader.Read())
{
 // iterate over the result and print the result on the console
 Console.WriteLine(reader.GetString(0))
}
connection.Close()

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 373

SQLite Sample
Another sample that uses the xHost.type function is the usage of a simple SQLite database. It is required that the
SQLite libraries/DLLs are in the search path of the system or in the same directory as the Viz Arc executable.

var SQLiteConnection = xHost.type('System.Data.SQLite.SQLiteConnection',
'System.Data.SQLite')
// those two below are not needed for this sample as they dont get instantiated
explicityl
var SQLiteDataReader = xHost.type('System.Data.SQLite.SQLiteDataReader',
'System.Data.SQLite')
var SQLiteCommand = xHost.type('System.Data.SQLite.SQLiteCommand',
'System.Data.SQLite')

function ReadData(conn)
{
 // create q query
 sqlite_cmd = conn.CreateCommand()
 sqlite_cmd.CommandText = "SELECT Name FROM Artist LIMIT 10;" // read first 10
artists of the table

 // execute the query
 sqlite_datareader = sqlite_cmd.ExecuteReader();
 while (sqlite_datareader.Read())
 {
 // iterate over the result and print the result on the console
 Console.WriteLine(sqlite_datareader.GetString(0));
 }
}

function testSQLiteDB()
{
 // create a new connection specifying the database file name and the version
 // sample database can be found here https://github.com/lerocha/chinook-database
 conn = new SQLiteConnection("Data Source=C:\\tmp\\Chinook.db;Version=3;")
 try
 {
 // Open the connection:
 conn.Open()

 // read some data
 ReadData(conn)

 // close the connection
 conn.Close()
 }
 catch (ex)
 {
 Console.WriteLine("error in SQLite query " + ex)
 }
}

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 374

Global.OnInit = function ()
{
 testSQLiteDB()
}

TcpSend
The TcpSendAsync method, is used to send a short message to any host on any port of the network.

 Task<string> TcpSendAsync (string hostname, int port, string command, int timeoutInMs = 1000)
 Send command to hostname on port. If the parameter timeoutInMs is not specified, a default timeout

of 1 second is used.

Global.OnButtonPressed = async function (id)
{
 if(id == "sendTcp"){
 let response await TcpSendAsync("192.168.1.22", 1234, "say something\0",
5000)
 Console.WriteLine("response from client " + response)
 }
}

HtmlAgility Example
The classes HtmlDocument and HtmlWeb are exposed by the HtmlAgility library and enable parsing and data
extraction of html pages.

 //sample to use HtmlDocument class from HtmlAgility
 var doc = new HtmlDocument()
 doc.Load("c:/tmp/HtmlAgilityTest.html")

 for (var table of doc.DocumentNode.SelectNodes("//table")) {
 Console.WriteLine("Found: " + table.Id)

 for (var row of table.SelectNodes("tr")) {
 for (var cell of row.SelectNodes("th|td"))
 Console.Write(cell.InnerText + " ")
 Console.WriteLine("")
 }
 }

 // sample to use HtmlWeb class from HtmlAgility
 var html = "http://html-agility-pack.net/"
 var web = new HtmlWeb()
 var htmlDoc = web.Load(html)
 var node = htmlDoc.DocumentNode.SelectSingleNode("//head/title")
 Console.WriteLine("Node Name: " + node.Name + "\n" + node.OuterHtml)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 375

The contents of the file from the sample above c:/tmp/HtmlAgilityTest.html:

HTML Sample with Table

<!DOCTYPE html>
<html>
<style>
 table, th, td {
 border: 1px solid black;
 }
</style>
<body>
 <h2>A HTML table to test HTML Agility</h2>
 <table style="width:100%" id="dataTable">
 <tr>
 <th>Name</th>
 <th>Number</th>
 <th>Country</th>
 </tr>
 <tr>
 <td>Athlete A</td>
 <td>42</td>
 <td>Italy</td>
 </tr>
 <tr>
 <td>Athlete B</td>
 <td>34</td>
 <td>Japan</td>
 </tr>
 </table>
 <p>Here is some more text</p>
</body>
</html>

Read more about HtmlAgility here.

Main Script-only
There are functionalities that are specific to Viz Arc's main script:

Canvas Tabs Handling

 void SetActionsSelectedTab (string tabName)
 Looks for a tab named tabName and sets it as active.

 void SetActionsSelectedTab (int tabIndex)
 Sets the Action selected tab to the tab at tabIndex index.

 string GetActionsSelectedTabName ()
 Returns the currently selected tab's name.

 string[] GetActionsTabs ()

https://html-agility-pack.net/documentation

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 376

 Returns a string array with all tab names.

Action Template Handling

Arc's main scripts allows the user to interact with template actions on the action canvas.

 void PreviewSelectedTemplate ()
 Previews the currently selected template action.

 void ExecuteSelectedTemplate ()
 Executes the currently selected template action.

 void UpdateSelectedTemplate ()
 Updates the currently selected template action.

 void ContinueSelectedTemplate ()
 Continues the currently selected template action.

 void StillPreviewSelectedTemplate ()
 Generates a still preview of the currently selected template action.

Callbacks

 PreActionExecute (string actionName)
 Called whenever an is executed and before the actual execution occurs.
 actionName is the name of the action that is being executed.

 PosActionExecute (string actionName)
 Called whenever an is executed and after the actual execution occurs.
 actionName is the name of the action that is being executed.

 OnInit ()
 Called when the main script is started (User clicks on the Start button).

Template Script-only
The template script is a specific version that is used on the template designer and on the template action.

Action/Designer Handling

 void ExecuteTemplate ()
 Executes the owner template action or loaded template in the designer.

 void ContinueTemplate ()
 Continues the owner template action or loaded template in the designer.

 void OutTemplate ()
 Takes out the owner template action or loaded template in the designer.

 void UpdateTemplate ()
 Updates the owner template action or loaded template in the designer.

 void UpdateTemplate (string COs = null)

Note: The method presented only works when one and only one action (template action) is selected on
the action canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 377

 Updates the owner template action or loaded template in the designer. The parameter COs is a space
separated list of Control Object ID's that shall be updated. For large templates containing a big
amount of ControlObjects this is a very efficient alternative whenever only a small part in the scene
needs to be updated. For example, UpdateTemplate("currentScore totalScore") updates only the
two ControlObjects with id "currentScore" and "totalScore".

 void UpdateTemplate ("BP_Name.VariableName")
 Updates the owner template action or loaded template in the designer. This method can be used if

the scene is in Unreal Engine. For large templates containing a large amount of variables, this is a
very efficient alternative when only a variable in the blueprint needs to be updated.

 void UpdateTemplate ("BP_Name", "[VariableName1, VariableName2, ecc...]")
 Updates the owner template action or loaded template in the designer. This method can be used if

the scene is in Unreal Engine. For large templates containing a large amount of variables, this is a
very efficient alternative when only a few variables in the blueprint need to be updated.

 void PreviewTemplate ()
 Previews the owner template action or loaded template in the designer.

 void PreviewExecuteTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewContinueTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewOutTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewUpdateTemplate (string COs = null)
 Updates the owner template action or loaded template in the designer to the preview channel. The

parameter COs is a space separated list of Control Object ID's that shall be updated. For large
templates containing a big amount of ControlObjects this is a very efficient alternative whenever only
a small part in the scene needs to be updated. For example, UpdateTemplate("currentScore
totalScore") updates only the two ControlObjects with id "currentScore" and "totalScore".

Properties

 BaseAction ThisAction
 Returns the script accessor of this template. ThisAction might be null when using the template

editor.

if(ThisAction){
 // set the action's name
 ThisAction.Name = "Hello"
 // set the action's tooltip description
 ThisAction.Description = "Hello Description"
}

Control Object Handling

The template script allows the user to interact with the template's control objects, only supported for Viz and
Flowics templates.

 void SetControlObject (string objectID, dynamic value)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 378

 Sets the control object with id equal to objectID's value to value. The set object's value is sent on
template execute/update.

 ControlObject ID's set by this methods which have not been present in the payload during template
creation, are added dynamically.

 bool HasControlObject (string objectID)
 Returns true when the objectId has been assigned wither through the UI or through code using the

SetControlObject method, otherwise it returns false.

Template Channels Handling

The template script allows the user to change the program output channel.

 void SetSelectedChannel (string name)
 Sets the selected program output channel to name.

 ScriptingChannel GetSelectedChannel ()
 Returns the currently selected program channel of the template action.

ScriptingChannel

The ScriptingChannel class is used for finer control on the Engines contained in the channel.

Properties

 Name
 The channel's name.

 Count
 The number of Engines in the channel.

Methods

 void SendSingleCommand (string command)
 Sends command to all the Engines in the channel.

 void SendMultipleCommands (string[] commands)
 Sends all the input commands to all the Engines in the channel.

 void SendToSMM (string key, string value, bool doEscape)
 Sends key-value pair to Shared Memory to all Engines contained in the channel. doEscape specifies

whether the value string is escaped.
 void SendToSMM (string key, string value, bool doEscape, string destination)

 Sends key-value pair to Shared Memory to all Engines contained in the channel. doEscape specifies
whether the value string is escaped.

 destination can be either SYSTEM, COMMUNICATION or DISTRIBUTED

Template Scene Handling

The template script allows the user to set the scene that should be loaded when executing.

Note: SetControlObject only works on control objects that aren't already linked to UI parameters.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 379

 void SetSceneFullpath (string fullpath = null)
 The input fullpath is the value that is sent to the Engine when executing the template. When no full

path is provided the user config value is removed and the original attached scene is used.
 string GetBaseContainerPath ()

 Returns the current base container path where the root control object is located.
 bool SetBaseContainerPath ()

 Sets the base container path where the root control object is located. This might be useful to redirect
the destination of the ContolObjects to a different container in the same scene.

 string GetDirector ()
 Gets the current director executed on Execute or on Continue.

 bool SetDirector (string dir)
 Sets the director executed on Execute or on Continue.

Template Action Configuration

 bool IsCommandHeaderVisible
 Indicates whether the CommandHeader should be visible on the template action.

 bool UpdateOnSelected
 When this flag is set, the script callbacks are only triggered when the template action is selected on

the action canvas (blue border).

Callbacks

 OnCreated ()
 Called when the template script is executed (when the template action is created and when the

template opened on the designer is started).
 OnDestroyed ()

 Called when template is being stopped/destroyed. Can be used for cleanup, save state, stopping/
canceling timers.

 OnShow ()
 Called when the template is shown (when the template action's pop-up is opened, when the action

becomes embedded and when the template opened on the designer is started).
 OnExecute ()

 Called when the template is executed.
 OnPreviewExecute ()

 Called when the template is executed to the preview channel.
 OnContinue ()

 Called when the template is continued.
 OnPreviewContinue ()

 Called when the template is continued to the preview channel.
 OnUpdate ()

 Called when the template is updated.
 OnPreviewUpdate ()

 Called when the template is updated to the preview channel.
 OnOut ()

 Called when the template is taken out.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 380

 OnPreview ()
 Called when the template is previewed.

 OnTrackerAction (string action)
 Called on certain Object Tracker events. the action parameter determines the type of event:

 take: Triggered when Object Tracker is taken On Air.
 takeout: Triggered when Object Tracker is taken Off Air.
 preview: Triggered when Object Tracker preview is taken.
 previewout: Triggered when Object Tracker preview is taken out.
 newTracker <index>: Triggered whenever a new object has been selected for tracking. index

is 1 based.
 lostTracker <index>: Triggered whenever a tracked object has lost tracking. index is 1 based.

Sample Usage of Object Tracker Script API

Global.OnTrackerAction = function (action)
{
 Console.WriteLine("tracker action " + action)

 if(action == "take")
 GetAction("DATA").Execute()
 else if(action.startsWith("newTracker")){
 // we want to take off air whatever is On Air when we select a new tracked
object
 TakeOutTracker()
 Console.WriteLine("OFF AIR")
 }
}

 OnArenaPosition (double screenX, double screenY, double worldX, double worldY, double worldZ)
 Called when the user clicks on the Viz Arena view with the positioning tool.

 screenX and screenY are the screen coordinates of the mouse click. The lower left corner of
the arena screen is the origin (0,0).

 wolrdX, worldY and worldZ are Viz Engine world coordinates, the units (default meters) are
the same as for the selected Viz Arena project.

Common Callbacks
Callbacks that can be used in the global script and template scripts

 OnVideoMouseLeftButtonDown (point)
 Called when the user pressed the left mouse button on the video output.

 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseRightButtonDown (point)

Note: The OnDestroyed callback has a maximum execution time of five seconds. If it exceeds this, the
template is forcefully stopped.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 381

 Called when the user pressed the left mouse button on the video output.
 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseMove (point)
 Called when the user moved the mouse on the video output.

 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseWheel (delta)
 Called when the user rolled the mouse wheel on the video output.

 delta is a floating point value, typical values are -120.0 for mouse wheel down and 120.0 for
mouse wheel up.

Parameters
Parameters are the base components of Viz Arc's scripting. A list of all existing parameters types and their
associated properties is presented below.

Base Parameters Functionality

The following properties and methods are shared among all parameters

 string Label [Get, Set]
 Gets/sets the label that is displayed on the UI.

 bool IsEnabled [Get, Set]
 Gets/sets the enabled status of the parameter. Disabled parameters can be interacted with.

 bool IsVisible [Get, Set]
 Sets whether the parameter is visible. Invisible parameters are visible (displayed as grayed out) only

while editing (and scripts are not running).
 double X [Get, Set]

 Gets/sets the horizontal position of the parameter on the canvas.
 double Y [Get, Set]

 Gets/sets the vertical position of the parameter on the canvas.
 double Width [Get, Set]

 Gets/sets the width of the parameter.
 double Height [Get, Set]

 Gets/sets the height of the parameter.
 void SetColor (byte r, byte g, byte b, byte a = 255)

 Sets the parameter's color to the input RGBA color.
 string Color

 Gets/sets the parameter's selected color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).
 int ColorR

 Gets/sets the parameter's selected red color value in the range [0, 255].
 int ColorG

 Gets/sets the parameter's selected green color value in the range [0, 255].
 int ColorB

 Gets/sets the parameter's selected blue color value in the range [0, 255].
 int ColorA

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 382

 Gets/sets the parameter's selected alpha value in the range [0, 255].
 string Tooltip [Get, Set]

 Gets/sets the tooltip of the UI element.
 string LinkedCO [Get]

 The name of the associated ControlObject (Template Scripting only).
 void UpdateDataLink()

 Forces an explicit evaluation of the DataLink expression associated with this parameter.

A sample use of the LinkedCO property:

Global.OnParameterChanged = function (id)
{
 // get linked ControlObject id associated to parameter 'id'. It is null if it's
not linked to any CO.
 let linkedCO = GetParameter(id).LinkedCO

 if(linkedCO)
 {
 Console.WriteLine("Changed: " + id + ", Linked Control Object ID: " +
linkedCO)

 // live update the template
 UpdateTemplate(linkedCO)
 }
}

Layout

The layout parameters allow the user to organize and improve the usability of a script/template.

Panel

 BaseParameter [] Children [Get]
 Returns an array with all of the panel's children.

 BaseParameter GetParameter (string parameterID)
 Tries to find a child with id equal to parameterID. Returns it if successful.

Tabs

 string Value [Get, Set]
 Set: Attempts to find a tab with its name equal to the input. If found, sets it as selected tab.
 Get: Returns the name of the selected tab.

 BaseParameter [] Children [Get]
 Returns an array with all of the panel's children.

 BaseParameter GetParameter (string parameterID)
 Tries to find a child with id equal to parameterID. Returns it if successful.

 bool AllowReordering
 Whether a user can reorder the tabs.

 int SelectedIndex [Get, Set]

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 383

 Gets/sets the index of the selected tab.

Info

 string Value [Get, Set]
 Gets/sets the info text that displays on the parameter.

Label

TextColor

 string Value [Get, Set]
 Gets/sets the labels text color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).

Dialogs

Color

 string Value [Get, Set]
 Gets/sets the parameter's selected color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).

 int R [Get]
Gets the value of the red component in the range [0, 255].

 int G [Get]
Gets the value of the green component in the range [0, 255].

 int B [Get]
Gets the value of the blue component in the range [0, 255].

 int A [Get]
Gets the value of the alpha component in the range [0, 255].

 int RPercent [Get]
Gets the value of the red component in the range [0, 1].

 int GPercent [Get]
Gets the value of the green component in the range [0, 1].

 int BPercent [Get]
Gets the value of the blue component in the range [0, 1].

 int APercent [Get]
Gets the value of the alpha component in the range [0, 1].

 void SetR (int R)
Sets the red component in the range [0, 255].

 void SetG (int G)
Sets the green component in the range [0, 255].

 void SetB (int B)
Sets the blue component in the range [0, 255].

 void SetA (int A)
Sets the alpha component in the range [0, 255].

 void SetRGB (int R, int G, int B)
Sets the red, green and blue components in the range [0, 255].

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 384

 void SetRGBA (int R, int G, int B, int A)
Sets the red, green, blue and alpha components in the range [0, 255].

 void SetRPercent (double R)
Sets the red component in the range [0, 1].

 void SetGPercent (double G)
Sets the green component in the range [0, 1].

 void SetBPercent (double B)
Sets the blue component in the range [0, 1].

 void SetAPercent (double A)
Sets the alpha component in the range [0, 1].

 void SetRGBPercent (double R, double G, double B)
Sets the red, green and blue components in the range [0, 1].

 void SetRGBAPercent (double R, double G, double B, double A)
Sets the red, green, blue and alpha components in the range [0, 1].

DateTime

The DateTime parameter provides comprehensive date and time selection with extensive scripting capabilities
including component accessors, formatting helpers, Unix timestamp support, and range constraints.

 string Value [Get, Set]
 Gets/sets the date/time as ISO 8601 string (for example, "2025-01-15T14:30:00").

 string MinDate [Get, Set]
 Gets/sets the minimum selectable date (ISO format).

 string MaxDate [Get, Set]
 Gets/sets the maximum selectable date (ISO format).

 bool EnableTime [Get, Set]
 Gets/sets whether time selection is enabled (not just date).

 bool ShowSeconds [Get, Set]
 Gets/sets whether seconds are shown in the time picker.

Component Accessors (Read-Only)

 int Year [Get]
 Gets the four-digit year (for example, 2025).

 int Month [Get]
 Gets the month (1-12).

 int Day [Get]
 Gets the day of month (1-31).

 int Hour [Get]
 Gets the hour (0-23).

 int Minute [Get]
 Gets the minute (0-59).

 int Second [Get]
 Gets the second (0-59).

Methods

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 385

 DateTime GetDateTime()
 Gets the value as a .NET DateTime object.

 void SetDateTime(DateTime dt)
 Sets the value from a .NET DateTime object.

 void SetDate(int year, int month, int day)
 Sets the date portion while preserving the time.

 void SetTime(int hour, int minute, int second = 0)
 Sets the time portion while preserving the date.

 long GetUnixTimestamp()
 Gets the value as Unix timestamp (seconds since January 1, 1970).

 void SetFromUnixTimestamp(long timestamp)
 Sets the value from a Unix timestamp.

 string GetDateString()
 Gets a formatted date string.

 string GetTimeString()
 Gets a formatted time string.

 string GetDateTimeString()
 Gets a formatted date and time string.

Examples

Basic Date/Time Access:

Global.OnCreated = function() {
 // Set initial value to now
 eventDateTime.SetDateTime(new Date())
}

Global.OnParameterChanged = function(id) {
 if (id === "eventDateTime") {
 // Access individual components
 Console.WriteLine("Year: " + eventDateTime.Year)
 Console.WriteLine("Month: " + eventDateTime.Month)
 Console.WriteLine("Day: " + eventDateTime.Day)
 Console.WriteLine("Hour: " + eventDateTime.Hour)
 Console.WriteLine("Minute: " + eventDateTime.Minute)
 Console.WriteLine("Second: " + eventDateTime.Second)
 // Get ISO string
 Console.WriteLine("ISO: " + eventDateTime.Value)
 }
}

Set Date and Time Separately:

Global.OnCreated = function() {
 // Set date to January 15, 2025 (preserves current time)
 eventDateTime.SetDate(2025, 1, 15)
 // Set time to 14:30:00 (preserves current date)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 386

 eventDateTime.SetTime(14, 30, 0)
}

Unix Timestamp Conversion:

Global.OnCreated = function() {
 // Set from Unix timestamp
 let timestamp = 1704067200 // Jan 1, 2024 00:00:00 UTC
 eventDateTime.SetFromUnixTimestamp(timestamp)
 Console.WriteLine("Set to: " + eventDateTime.GetDateTimeString())
}

function getTimestamp() {
 // Get current value as Unix timestamp
 let ts = eventDateTime.GetUnixTimestamp()
 Console.WriteLine("Unix timestamp: " + ts)

 // Send to external system
 SetData("eventTimestamp", ts)
}

function syncWithServer() {
 // Receive timestamp from server
 let serverTimestamp = arc.GetData("serverTime")
 if (serverTimestamp)
 eventDateTime.SetFromUnixTimestamp(serverTimestamp)
}

Countdown Timer:

let countdownInterval = null;

Global.OnCreated = function() {
 // Set target date
 targetDateTime.SetDate(2025, 12, 31)
 targetDateTime.SetTime(23, 59, 59)
 // Start countdown
 countdownInterval = setInterval(function() {
 updateCountdown();
 }, 1000)
}
Global.OnDestroyed = function() {
 if (countdownInterval)
 clearInterval(countdownInterval);
}

function updateCountdown() {
 let now = new Date()
 let target = new Date(targetDateTime.Value)
 let diff = target - now // milliseconds

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 387

 if (diff <= 0) {
 countdownText.Value = "EVENT STARTED!"
 clearInterval(countdownInterval)
 return
 }

 // Convert to days, hours, minutes, seconds
 let days = Math.floor(diff / (1000 * 60 * 60 * 24))
 let hours = Math.floor((diff % (1000 * 60 * 60 * 24)) / (1000 * 60 * 60))
 let minutes = Math.floor((diff % (1000 * 60 * 60)) / (1000 * 60))
 let seconds = Math.floor((diff % (1000 * 60)) / 1000)

 countdownText.Value = days + "d " + hours + "h " + minutes + "m " + seconds + "s
}

Date Arithmetic:

function addDays(days) {
 let current = new Date(eventDateTime.Value)
 current.setDate(current.getDate() + days)
 eventDateTime.SetDateTime(current)
}

function addHours(hours) {
 let current = new Date(eventDateTime.Value)
 current.setHours(current.getHours() + hours)
 eventDateTime.SetDateTime(current)
}

Global.OnButtonPressed = function(id) {
 if (id === "addOneDay")
 addDays(1)
 else if (id === "addOneHour")
 addHours(1)
 else if (id === "setToNow")
 eventDateTime.SetDateTime(new Date())
 else if (id === "setToMidnight")
 eventDateTime.SetTime(0, 0, 0)
}

Working with JavaScript Date Objects:

Global.OnCreated = function() {
 // DateTime parameter value is ISO string, compatible with JS Date
 let jsDate = new Date(eventDateTime.Value)
 Console.WriteLine("JavaScript Date: " + jsDate)

 // Set from JavaScript Date
 let tomorrow = new Date()
 tomorrow.setDate(tomorrow.getDate() + 1)
 eventDateTime.Value = tomorrow.toISOString()

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 388

}

Directory

 string Value [Get, Set]
 Gets/sets the selected directories fullpath.
 Set: The input value must be a valid directory in the file system.

File

 string Value [Get, Set]
 Gets/sets the selected file's fullpath.

 bool WatchFile [Get, Set]
 Enable/disable the watchfile feature.

 bool ReadRawContent [Get, Set]
 Set to true if the raw file content should be read into the DataMap. Set to false if it is an excel or csv

file.
 string Separator [Get, Set]

 The separator when reading a csv file. Default is “,”.
 string Sheet [Get, Set]

 The name of the excel sheet to be read.
 string StartCell [Get, Set]

 The name of the start cell to read the content from (for example, “B5”).
 string StartCell [Get, Set]

 The name of the end cell to read the content from (for example, “H11”).
 bool HasHeaders [Get, Set]

 Indicates whether or not the first row of the table content is a header row.
 bool ConvertToJson [Get, Set]

 Whether to convert the content of the file into a json format.
 string DataMapTarget [Get, set]

 The name of the key to be used in the DataMap to send the content of the file to.
 void ReloadFile()

 Forces to read the content of the file. Might be used when WatchFile is disabled.

Asset

 string Value [Get, Set]

Note: The Value property always uses ISO 8601 format ("2025-01-15T14:30:00"), which is compatible with
JavaScript's Date constructor and most APIs.

Note: DateTime values are stored without explicit timezone information. If you need timezone-aware
dates, handle timezone conversion in your script.

Note: Year, Month, Day, Hour, Minute, and Second properties are read-only. Use SetDate() or SetTime()
methods to modify them.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 389

 Gets/sets the selected asset's fullpath.
 Set: The input path needs to be valid.

 string Prefix [Get, Set]
 The prefix to be added to the Value when sent to the engine.

 string Postfix [Get, Set]
 The postfix to be added to the Value when sent to the engine.

 async void SetImage (string name)
 An awaitable method to set an image name.

WebView

This component lets you view a web page.

 string Value [Get, Set]
 Gets/sets the URL of the web page to be visualized.

 void Reload ()
 Reloads the current page.

 void GoBack ()
 Navigates back in history.

 void GoForward ()
 Navigates forward in history.

 void ExecuteJavascript (string method)
 Invokes method on the currently loaded web page.

 void ExecuteJavascript (string method, params object[] args)
 Invokes method with args as arguments on the currently loaded web page.

A sample html file that might be loaded in a WebView:

<!DOCTYPE html>
<html>
<body>

<button onclick="DataMapButton()">Set Data Map</button>
<input type="text" id="someText" oninput="wroteSomeText()">

<p id="demo"></p>

<script>
function DataMapButton() {
 let text = document.getElementById("someText").value;
 // set the data map variable 'fromWebPage' to the entered value
 arc.SetData("fromWebPage", text);
}

Note: Valid input values are: Graphic Hub items (Image, Geom, Material), Media service links (http://...) or
local file system files.

Note: The browser used for rendering is based on CEF. It might not play all video codecs.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 390

function wroteSomeText() {
 let text = document.getElementById("someText").value;
 document.getElementById("demo").innerHTML = "You wrote: " + text;
 // interact with arc and set the parameter "text_0" to the value just entered
 arc.SetParameterValue("text_0", text);
}

function someFunction1()
{
 alert("You invoked someFunction1!")
}

function someFunction2(para1, para2)
{
 alert("You invoked someFunction2 with arguments: " + para1 + " " + para2)
}
</script>
</body>
</html>

Note the arc object which gets injected and gives access to all scripting methods available in Viz Arc. For example,
arc.SetData(“matchResult”, “0:1”) sets a variable on the DataMap.

A Viz Arc template interacting with the html page above after clicking the Execute Method 2 button:

The code of the Viz Arc template might look like this, note the ExecuteJavascript methods that allow you to
interact with the web page.

Global.OnButtonPressed = function (id)
{
 switch(id)
 {

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 391

 case "reloadBrowser":
 webview_0.Reload()
 break
 case "backBrowser":
 webview_0.GoBack()
 break
 case "backBrowser":
 webview_0.GoFoward()
 break
 case "exe1":
 webview_0.ExecuteJavascript("someFunction1")
 break
 case "exe2":
 webview_0.ExecuteJavascript("someFunction2", "one", "two")
 break
 }
}

Bool

 bool Value [Get, Set]
 Gets/sets the parameter's bool value.

Button

 void Click ()
 Triggers a click event on the button parameter.

 string BackgroundImage
 Gets/sets the path to the background image. It can be either a local file path (for example, c:/tmp/

someimage.png) a Graphic Hub path (for example, IMAGE*/project/A/imageButton) or a URL (for
example, http://storage.internal/image.jpg).

 string ImageMargin
 Gets/sets the margins in pixels of the background image. Specify either one, two or four comma

separated margins. A value of 5 applies a margin of 5 pixels in all directions, a value of 5, 3
applies a margin of 5 pixels on the left and right and a margin of 3 at the top and bottom. A value of
1, 2, 3, 4 applies the respective margins in the order left, top, right and bottom.

 string DirectorPath
 Gets/sets the Stage Director to be executed on click. For example, $Director$SubDirector

 string DirectorExecute
 Gets/sets the type of action type to execute on click. Possible values are <nothing>, START, CONTINUE,

CONTINUE REVERSE, PAUSE or RESET.
 string ActionExecute

 Gets/sets the name or UUID of the action to be executed on click.
 bool TakeEngineSnapshotSync (width = -1, height = -1, withAlpha = true, timeoutMS = 5000)

 Takes a snapshot from Viz Engine. Viz Engine is selected from the currently selected channel or in
template designer it is taken from the Viz Editing Engine. This command works only with Viz Engine.

 width of the snapshot in pixels. -1 uses the button's current width. 0 captures the full
frame width.

http://storage.internal/image.jpg

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 392

 height of the snapshot in pixels. -1 uses the button's current height. 0 captures the full
frame height.

 withAlpha true , captures with alpha channel. When false , captures without alpha.
 timeout in milliseconds for the snapshot operation.

 async <bool> TakeEngineSnapshot(width = -1, height = -1, withAlpha = true, timeoutMS = 5000)
 awaitable method of the TakeEngineSnapshotSync.

 void ClearSnapshot()
 Clears the snapshot background image and resets all related properties to their default values.

Toggle Button

 void SetCheckedColor (byte r, byte g, byte b, byte a = 255)
 Sets the toggle's color to the input RGBA color when the toggle is in it's checked state.

 string CheckedColor
 Gets/sets the toggle's color in Hex format, for example, #FF0A0A8C (#RRGGBBAA) when the toggle is

in it's checked state.
 int CheckedColorR

 Gets/sets the toggle's red color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorG

 Gets/sets the toggle's green color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorB

 Gets/sets the toggle's blue color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorA

 Gets/sets the toggle's alpha value in the range [0, 255] when the toggle is in it's checked state.
 string CheckedLabel

 Gets/sets the label text displayed when the button is in the checked state.
 string BackgroundImage

 Gets/sets the path to the background image. It can be either a local file path (for example, c:/tmp/
someimage.png) a Graphic Hub path (for example, IMAGE*/project/A/imageButton) or a URL (for
example, http://storage.internal/image.jpg).

 string ImageMargin
 Gets/sets the margins in pixels of the background image. Specify either one, two or four comma

separated margins. A value of 5 applies a margin of 5 pixels in all directions, a value of 5, 3
applies a margin of 5 pixels on the left and right and a margin of 3 at the top and bottom. A value of
1, 2, 3, 4 applies the respective margins in the order left, top, right and bottom.

 bool IsChecked
 Gets/sets the toggle button's state to checked or unchecked.

 string ContainerPath
 Gets/sets the Viz scene container path (for example, $object$ALL$left) to be used when

VisibilityCheckd/VisibilityUncheckd or KeyChecked/KeyUnchecked actions are set.
 string DirectorPath

 Gets/sets the Stage Director path (for example, $Director$SubDirector)to be executed when
DirectorCheckd/DirectorUnchecked actions are set.

 string ActionChecked
 The action name or uuid to be executed when the toggle button gets checked.

http://storage.internal/image.jpg

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 393

 string ActionUnchecked
 The action name or uuid to be executed when the toggle button gets unchecked.

 string VisibilityChecked
 Gets/sets the visibility of the container specified in ContainerPath when the toggle button gets

checked. Possible values are <nothing>, ON or OFF.
 string VisibilityUnchecked

 Gets/sets the visibility of the container specified in ContainerPath when the toggle button gets
unchecked. Possible values are <nothing>, ON or OFF

 string DirectorChecked
 Gets/sets the action to be executed on the director specified in DirectorPath when the toggle gets

checked. Possible values are <nothing>, START, CONTINUE, CONTINUE REVERSE, PAUSE or RESET.
 string DirectorUnchecked

 Gets/sets the action to be executed on the director specified in DirectorPath when the toggle gets
unchecked. Possible values are <nothing>, START, CONTINUE, CONTINUE REVERSE, PAUSE or RESET.

 string KeyChecked
 Gets/sets the key action of the container specified in ContainerPath when the toggle button gets

checked. Possible values are <nothing>, ACTIVE, INACTIVE, COMBINE WITH BG ON, COMBINE WITH BG
OFF.

 string KeyUnchecked
 Gets/sets the key action of the container specified in ContainerPath when the toggle button gets un

checked. Possible values are <nothing>, ACTIVE, INACTIVE, COMBINE WITH BG ON, COMBINE WITH BG
OFF.

 string OverlayID
Gets/sets the Flowics overlay ID to control automatically when the button is toggled. Only works with
Flowics templates.

Double / Double Slider

 double Value [Get, Set]
 Gets/sets the parameter's double value.

 double MinValue [Get, Set]
 Gets/sets the parameter's minimum double value. Input value needs to be lower than the current

MaxValue.
 double MaxValue [Get, Set]

 Gets/sets the parameter's maximum double value. Input value needs to be higher than the current
MinValue.

 double MinRange [Get, Set]
 Gets/sets the parameter's minimum range double value.

 double MaxRange [Get, Set]
 Gets/sets the parameter's maximum range double value.

 bool RangeEnabled [Get, Set]
 If true, forces the slider to remain within the specified Min/Max range.

 bool ShowReset [Get, Set]
 Enable or disable the reset to the default button on the UI.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 394

Dropdown / Radio

 string Value [Get, Set]
 Gets/sets the selected entry on the dropdown.

 int SelectedIndex [Get, Set]
 Gets/sets the selected index of the dropdown.

 int Count [Get]
 Gets the number of entries on the dropdown.

 int IndexOf (string option)
 Looks for an entry equal to option. Returns its index if found, -1 otherwise.

 void Insert (int index, string option)
 Inserts an entry with value option at index position. index needs to be between 0 and Count.

 void Add (string option)
 Adds an entry with value option atthe end of the entry list.

 void Remove (string option)
 Looks for an entry equal to option. Removes it if found.

 void RemoveAt (int index)
 Removes the entry at position index. index needs to be between 0 and Count.

 void SetItems (string[] entries)
 Sets the dropdown's entry list to the input entries.

 string Get (int index)
 Returns the entry located at index position. index needs to be between 0 and Count.

 string parameter[int index]
 Array accessor for entries. Returns the entry located at index position.

 void Clear ()
 Removes all entries from the dropdown.

Int / Int Slider

 int Value [Get, Set]
 Gets/sets the parameter's int value.

 int MinValue [Get, Set]
 Gets/sets the parameter's minimum int value. Input value needs to be lower than the current

MaxValue.
 int MaxValue [Get, Set]

 Gets/sets the parameter's maximum int value. Input value needs to be higher than the current
MinValue.

MultiText / Text

 string Value [Get, Set]
 Gets/sets the parameter's text value.

Triplet

 double X [Get, Set]
 Gets/sets the parameter's X double value.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 395

 double Y [Get, Set]
 Gets/sets the parameter's Y double value.

 double Z [Get, Set]
 Gets/sets the parameter's Z double value.

 double DefaultX [Get, Set]
 Gets/sets the default parameter’s X value.

 double DefaultY [Get, Set]
 Gets/sets the default parameter’s Y value.

 double DefaultZ [Get, Set]
 Gets/sets the default parameter’s Z value.

 bool XEnabled [Get, Set]
 Gets/sets the enabled status of the X value.

 bool YEnabled [Get, Set]
 Gets/sets the enabled status of the Y value.

 bool Z Enabled [Get, Set]
 Gets/sets the enabled status of the Z value.

 bool AllowProportional [Get, Set]
 Gets/sets whether the user can toggle the proportional lock.

 bool IsProportional [Get, Set]
 Gets/sets the state of the proportional lock.

Table

Properties

 string Value [Get]
 Gets an string containing the table content in a XML format (much like ControlList).

 int MinimumRows [Get, Set]
 Gets/sets the parameter's minimum number of rows. Input value needs to be lower than the current

MaximumRows.
 int MaximumRows [Get, Set]

 Gets/sets the parameter's maximum number of rows. Input value needs to be higher than the current
MinimumRows.

 int MinimumColumns [Get, Set]
 Gets/sets the parameter's minimum number of columns. Input value needs to be lower than the

current MaximumColumns.
 int MaximumColumns [Get, Set]

 Gets/sets the parameter's maximum number of columns. Input value needs to be higher than the
current MinimumColumns.

 int RowCount [Get]
 Gets the current number of rows on the table.

 int ColumnCount [Get]
 Gets the current number of columns on the table.

 int SelectedRow [Get]
 Gets the currently selected row. In case of multi-selection it returns the first selected row. If no row is

selected, -1 is returned.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 396

 int SelectedIndex [Get]
 An alias for SelectedRow.

 bool MatchHeaders [Get, Set]
 Tries to match headers of the incoming data, with the names of the column header names of the

table.
 bool MatchDataColumns [Get, Set]

 Creates and matches columns of the table according to incoming data.
 bool MatchDataRows [Get, Set]

 Creates and matches as many rows in the table as there are in the incoming data.
 bool TransposeData [Get, Set]

 Swaps rows and columns, when set to true.
 bool TriggerOnAllChanges [Get, Set]

 Triggers the OnTableCellValueChanged callback when set to true, for when a table cell value has
been changed by user input.

Methods

Cell Handling

 BaseCell Accessor [int row, int column] [Get]
 Gets the cell located at row-indexed row and column-indexed column.

 BaseCell GetCell (int row, int column)
 Gets the cell located at row-indexed row and column-indexed column.

 void SetCellValue (int row, int col, dynamic value)
 Sets the cell’s value (located at [row, column]) to value. [dynamic] value can either be a string or have

a type that is compatible with the target cell.
 stringGetCellValue (int row, int col)

 Gets the cell’s (located at [row, column]) string value representation.
 void ClearColumnValues (int columnIndex)

 Resets all the cell’s values in columnIndex column.
 void ClearRowValues (int rowIndex)

 Resets all the cell’s values in rowIndex row.
 void ClearAllValues ()

 Resets all the cell’s values.
 void Clear ()

 Removes all the content (all columns and rows are deleted).

Columns Handling

Inserting a column from code requires the user to specify the type of column that needs to be created, the valid
column types are:

 bool: Column with BoolCell
 string: Column with StringCell
 int: Column with IntCell
 ivec2: Column with IntDupletCell
 ivec3: Column with IntTripletCell
 double: Column with DoubleCell

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 397

 dvec2: Column with DoubleDupletCell
 dvec3: Column with DoubleTripletCell
 asset: Column with AssetCell
 dropdown: Column with dropdown items

All column interactions take into consideration the maximum and minimum number of columns of the table

 void AddColumn (string columnType)
 void AddColumn (string columnType, string name)

 Adds a column of type columnType named name if specified, otherwise the default is used.
 void AddColumn(string columnType, string controlObjectId, string displayName)

 Adds a column of type columnType named displayName. The controlObjectId is the internal name
used for ControlObject mapping.

 void AddMultipleColumn (int count, string columnType)
 Adds count columns of columnType type.

 void InsertColumn (int index, string columnType)
 void InsertColumn (int index, string columnType, string name)

 Inserts a column at index index of columnType type named name if specified, otherwise the default is
used.

 void InsertColumn(int index, string columnType, string controlObjectId, string displayName)
 Inserts a column at index index of columnType type named displayName. The controlObjectId is the

internal name used for ControlObject mapping.
 vodi InsertMultipleColumn (int index, string columnType, int count)

 Inserts count columns at index index of columnType type.
 void RemoveColumnAt (int index)

 Removes column at index index.
 void MoveColumn (int targetIndex, int newPosition)

 Moves column from targetIndex position to newPosition.
 void ClearColumns ()

 Removes all columns.
 double GetColumnWidth (int index)

 Returns the column width in pixels of column.
 void SetColumnWidth (int index, double width)

 Sets the column width in pixels of column with index index.
 double GetColumnName (int index)

 Returns the column label.
 void SetColumnName (int index, string name)

 Sets the column label to name of column with index index.
 void SetColumnControlObjectID(int index, string controlObjectId)

 Sets the column's internal ControlObject ID used for mapping in case it is bound to a Viz Engine’s
ControlList object.

 int GetColumnIndexByName (string name)
 Returns the index of the first column matching name. Returns -1 otherwise.

 int GetColumnIndexByControlObjectID(string name)
 Returns the index of the first column matching the control object name. Returns -1 otherwise. This

can be used for ControlList generated tables in Viz Templates.
 string GetColumnControlObjectID(int index)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 398

 In case the table is bound to a Viz Engine’s ControlList object, this function returns the id associated
to the colum’s ControlObject.

 void SetColumnReadOnly (int index, bool isReadOnly)
 void SetColumnReadOnly (string name, bool isReadOnly)

 Sets a column to be read only or not.
 bool GetColumnReadOnly (int column)
 bool GetColumnReadOnly (string name)

 Returns whether a column is read only.
 void SetColumnEditorOnly (int index, bool editorOnly)
 void SetColumnEditorOnly (string name, bool editorOnly)
 bool GetColumnEditorOnly (int column)

DropDown Handling

 void SetDropdownOptions (int column, string [] options)
 Set dropdown items for an entire column (column must be of type 'dropdown')

 string[] GetDropDownOptions (int column)
 Returns a list of dropdown options for column.

 void AddDropdownOption (int column, string option)
 Appends option to all dropdowns in column.

 void RemoveDropdownOption (int column, string option)
 Removed the first occurence of option from all dropdowns in column.

 void ClearDropdownOption (int column)
 Clears all dropdowns in column.

 void SetCellDropdownOptions (int row, int column, string [] options)
 Set dropdown items in specific cell (column must be of type 'dropdown')

 string[] GetCellDropdownOptions (int row, int column)
 Returns an array of the items of the dropdown in row/column.

 void ClearCellDropdownOptions (int row, int column)
 Clears the items of the items of the dropdown in row/column

Rows Handling

All row interactions take into consideration the maximum and minimum number of rows of the table

 void SetNumberRows (int count)
 Adds/removes rows until the table’s RowCount is equal to count.

 void AddRow ()
 Adds a Row to the table.

 void AddMultipleRow (int count)
 Adds count rows to the table.

 void InsertRow (int index)
 Inserts a row at index position to the table.

 void InsertMultipleRow (int index, int count)
 Inserts count rows at index position to the table.

 void RemoveRowAt (int index)
 Removes row at index position.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 399

 void MoveRow (int targetIndex, int newPosition)
 Moves row from targetIndex position to newPosition.

 void ClearRows ()
 Removes all rows.

Table Parameter Example

// Open the cvs file with the starters, parse the content and add all riders to the
RaceTable (TableParameter)
function LoadRaceTable()
{
 // Setup columns from UI, Comment if already done manually
 //RaceTable.Clear()
 //RaceTable.AddColumn("string", "Horse")
 //RaceTable.AddColumn("string", "Trainer")
 //RaceTable.AddColumn("string", "Jockey")
 //RaceTable.AddColumn("string", "Owner")
 //RaceTable.AddColumn("string", "Colors")
 //RaceTable.AddColumn("string", "Horse CN")
 //RaceTable.AddColumn("asset", "Silk")

 // Clear rows
 RaceTable.ClearRows()

 var i = 0
 var FileContent = arc.ReadTextFile("D:/Horses/Starter.csv")
 var EntryArr = FileContent.split("\n")

 // First line is for the headers, ignore it
 for(i = 1; i < EntryArr.length; i++)
 {
 // Split the rider content
 var splitContent = EntryArr[i].split(",")

 // CVS file has great amount of data but we only want to display certain
stuff
 RaceTable.AddRow()
 RaceTable.GetCell(i-1, 0).Value = splitContent [19]
 RaceTable.GetCell(i-1, 1).Value = splitContent [22]
 RaceTable.GetCell(i-1, 2).Value = splitContent [25]
 RaceTable.GetCell(i-1, 3).Value = splitContent [27]
 RaceTable.GetCell(i-1, 4).Value = splitContent [34]
 RaceTable.GetCell(i-1, 5).Value = splitContent [20]
 // image assets need to be assigned using the SetCellValue method
 RaceTable.SetCellValue(i-1, 6, splitContent[21])
 }
}

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 400

Unreal
These are helper functions to invoke BluePrint functions:

 void InvokeBPFunction (string blueprintName, string functionName, params object[] arg)
 Invokes the function functionName on the Blueprint blueprintName, with a variable number of

parameters (typically strings and/or numbers).
 void InvokeBPFunction (string blueprintName, string functionName)

 Invokes the function functionName on the Blueprint blueprintName, without any arguments.

The methods are invoked on all Unreal Engines of the template’s currently selected channel.

Global.OnExecute = function ()
{
 // before executing the template, update some data on the Blueprint invoking
updateData
 InvokeBPFunction("BP_main", "updateData", "Hello", "World", 42.0, 3)
 // change the appearance of the car
 InvokeBPFunction("BP_CarManager_Blue", "Change Car", 1, true, "This is the new
car model");
}

Flowics

Overview

Flowics templates can programmatically control individual overlays through scripting. These methods only work
with Flowics-type templates.

Available Methods

 void ShowOverlay(string ids)
 Show one or more overlays. Parameter is space-separated overlay IDs (for example, n10717 n10718).

 void HideOverlay(string ids)
 Hide one or more overlays. Parameter is space-separated overlay IDs.

 void SetOverlayState(string id, string state)
 Set overlay state for a single overlay. State can be in , out , or idle .

 void SetOverlayStates(string states)
 Set multiple overlay states using prefix notation. Use + to show, - to hide (for example, +n10717

-n10718).
 void ShowAllOverlays()

 Show all overlays in the template.
 void HideAllOverlays()

 Hide all overlays in the template.
 void GotoFirst(string overlayId, string controlId)

 Navigates to the first item in a Flowics list item.
 overlayId - Overlay ID (for example, n10717)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 401

 controlId - Control ID within the overlay control (for example, list-1, carousel-main)
 void GotoNext(string overlayId, string controlId)

 Navigates to the next item in a Flowics control.
 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)

 void GotoPrev(string overlayId, string controlId)
 Navigates to the previous item in a Flowics control.

 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)

 void GotoItem(string overlayId, string controlId, string path, string value)
 Navigates to a specific item in a Flowics list based on a field value match.

 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)
 path - Path to the field to match (for example, id, name)
 value - Value to search for in the specified field

 void FlowicsSetTimer(string timerId, string timerValue)
 Sets a Flowics timer/stopwatch to a specific value without starting it (paused state).

 timerId - The global data provider ID for the timer
 timerValue - The timer value to start from (for example, "00:00:00" or milliseconds)

 void FlowicsSetTimerAndPlay(string timerId, string timerValue)
 Sets a Flowics timer/stopwatch to a specific value and starts playing.

 timerId - The global data provider ID for the timer
 timerValue - The timer value to start from (for example, "00:00:00" or milliseconds)

 void FlowicsStartTimer(string timerId, string timerValue)
 An alias for above’s FlowicsSetTimerAndPlay.

 void FlowicsSetTimerAndPlayRange(string timerId, string timerValue, string timerStart, string timerEnd)
 Sets a Flowics timer/stopwatch with a range (start/stop values) and starts playing.

 timerId - The global data provider ID for the timer
 timerValue - The current clock value
 timerStart - The start value for the range
 timerEnd - The stop value for the range (timer stops when reached)

 void FlowicsPauseTimer(string timerId)
 Pauses a Flowics timer/stopwatch.

 timerId - The global data provider ID for the timer
 void FlowicsPlayTimer(string timerId)

 Plays/resumes a Flowics timer/stopwatch.
 timerId - The global data provider ID for the timer

 void FlowicsResumeTimer(string timerId)
 Alias for FlowicsPlayTimer.

 void FlowicsResetTimer(string timerId)
 Resets a Flowics timer/stopwatch to its initial value.

 timerId - The global data provider ID for the timer

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 402

Examples

Basic Overlay Control

function OnButtonPressed(id) {
 if (id=== "showLowerThird") {
 // Show single overlay
 ShowOverlay("n10717")
 }
 else if (id=== "hideLowerThird") {
 // Hide single overlay
 HideOverlay("n10717")
 }
}

Multiple Overlays

function showGraphicsPackage() {
 // Show multiple overlays at once (space-separated)
 ShowOverlay("n10717 n10718 n10719")
}

function hideGraphicsPackage() {
 HideOverlay("n10717 n10718 n10719")
}

Set Overlay State

function controlOverlay(overlayId, action) {
 if (action === "in") {
 SetOverlayState(overlayId, "in")
 }
 else if (action === "out") {
 SetOverlayState(overlayId, "out")
 }
 else if (action === "idle") {
 SetOverlayState(overlayId, "idle")
 }
}

Batch State Changes

function updateOverlayStates() {
 // Use prefix notation: + = show, - = hide
 // This shows n10717 and n10719, hides n10718
 SetOverlayStates("+n10717 -n10718 +n10719")

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 403

}

Show/Hide All

Global.OnExecute = function (){
 // Show all overlays when template goes on-air
 ShowAllOverlays()
}

Global.OnOut = function () {
 // Hide all overlays when template goes off-air
 HideAllOverlays()
}

ToggleButton Integration

Toggle buttons can automatically control Flowics overlays by setting the OverlayID property:

function ShowBreakingNews() {
 // Link toggle button to Flowics overlay
 myToggle.OverlayID = "n10717";
 // Now toggling the button automatically shows/hides the overlay
 myToggle.IsChecked = true; // Shows overlay
}

Video
Set the video and PTZ source.

 void SetVideoSource (string name)
 Sets the name of the preview source window.

 void SetNDIPTZVideoControl (string ptzControl)
 Sets the name of the NDI PTZ control overlay source.

 void SetFlowicsOutput (string URL)
 Sets the global Flowics output URL.

Using async/await
Some methods are declared async, meaning the method might be time consuming (for example, while waiting for
an answer from a server). To avoid locking up the UI, one can await an async method, such that Viz Arc can
continue to process other events like user interaction. The async method might be processed on a different thread.

The following example shows how to retrieve the version of the first engine of the active channel on a template:

Note: These methods only work with Flowics templates. Calling them on Viz or Unreal templates has no
effect.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 404

Global.OnButtonPressed = async function (id)
{
 if(id == "getFromEngineButton"){
 let answer = await GetFromEngineAsync("VERSION", 3000)
 Console.WriteLine("engine version is " + answer)
 }
}

Note that it is mandatory to declare the calling functions as async, when using await. The async keyword can be
safely added to any Viz Arc callback, as shown with OnButtonPressed.

Using try/catch

It is highly recommended to use a try/catch block around awaited methods, otherwise, eventual errors are not
detected

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 405

6.5.4 Scenes Panel
In Viz Arc, actions control different parameters within the Vizrt scene. The scenes panel is available
in Actions and Set when working in Builder mode.

Right clicking the scene tabs or in the scene panel always gives you a context menu:

The Scenes Panel contains the following sections:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 406

1. Scene Panel
2. Load Scene
3. Scene Settings
4. Control Channels

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 407

5. Scene Tree
6. Stage Directors

Managing Scenes
Managing the scenes in a Viz Arc project can be done from the scene details area of the Scenes Panel or from the
window inside the Scenes Toolbar and existing scene loader.

This section covers the following topics:

 Add a Scene
 Change or Replace a Scene
 Delete a Scene

The Scene Panel
There are different ways to add a scene to a project:

When No Scene Is Added to a Project

1. Click the the ADD SCENE button in the middle of the scene panel or inside the Scenes Toolbar window.
2. Browse and double-click the desired scene in the scenes browser.

Use the Context Menu on the Scenes Panel

Right-click on the top area of the Scenes Panel.

1. Select Add Scene from the context menu.
a. Browse and double click the desired scene in the scenes browser.

2. Select Add Current Scene to add the currently loaded scene on the editing engine's main layer

1. Click the ADD SCENE button at the top of the window inside the Scenes Toolbar.
2. Select Add Scene from the context menu.
3. Browse and double-click the desired scene.

This opens the Content Hub window, where you can choose between Vizrt GH scenes or Unreal levels:

Vizrt

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 408

Unreal Engine

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 409

It's also possible to bookmark a specific folder in both the Vizrt and Unreal section:

Change or Replace a Scene
After a scene has been added to a project, it can be changed and replaced with a different scene. There are three
ways to open the scenes browser to select a new scene:

Right-click on the Scene tab from the scene panel,
or

Right-click on the scene loader from the
window inside the Scenes Toolbar.

Click the icon next to the scene name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 410

Click the scene’s thumbnail.

Delete a Scene

To delete a scene from a project:

1. Right-click the Scene tab from the scene panel, or
Right Click the scene loader from the window inside the Scenes Toolbar.

2. Select Delete Scene from the context menu.
3. Select Yes to confirm.

If there are more scenes in your Viz Arc project you can easily switch between them:

 using the drop-down scene menu, by selecting this icon

 or by clicking the left / right arrows

Info: Note that the scene is NOT be deleted from Graphic Hub, only from the Scene Tabs in Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 411

Create Scene Loader

To create a scene loader:

1. Right-click the Scene tab from the scene panel, or
Right Click the scene loader from the window inside the Scenes Toolbar.

2. Select Create Scene Loader from the context menu.

Load Scene on Engine

To load the scene on the Editing Engine:

1. Right-click the Scene tab from the scene panel, or
Right Click the scene loader from the window inside the Scenes Toolbar.

2. Select Load Scene on Engine from the context menu.
This will load the engine on the scene's Default Channel

Save Scene

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 412

To save the scene:

1. Right-click the Scene tab from the scene panel, or
Right Click the scene loader from the window inside the Scenes Toolbar.

2. Select Save Scene from the context menu
3. Save the scene on the editing engine by clicking Yes:

Loading Scenes
Scenes must be loaded to a Viz Engine for Viz Arc to be able to retrieve all the scene properties (Control
Channels, Scene Tree, Directors) and create actions in your project.

Scenes can be loaded in the following three ways:

Click the LOAD SCENE button in the middle of the scene
panel.

Click the Load button in the scene details of the selected tab
in the scene panel.

The scene will be loaded on the Editing Engine and will not be visible on the output. Use the context menu's Load
Scene on Engine entry to load the scene on the Editing Engine's MAIN layer.

Scene Settings
This section describes the settings that define what happens when loading scenes.

Note: Before loading a scene, select a default channel and layer. For more details on selecting a default
channel, see Scene Settings.

Loading the scene on the Editing Engine might impact the engine's performance. Make sure the engine is
not used on-air when parsing the scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 413

Vizrt Scene Settings

 Default Channel: Uses the default channel to ease the live operation. All actions created from the scene
properties are automatically assigned the same channel.

 Reset Stage: Resets all animations to frame 0 when loading the level, if enabled.

Unreal Level Settings

 Default Channel: Uses the default channel to ease the live operation. All actions created from the level
properties are automatically assigned the same channel.

 Reset Stage: Resets all animations to frame 0 when loading the level, if enabled.
 Search and Filter bar: Searches for a specific element in the Level tree and filters actions among those

available.

Control Channels
Viz Arc primarily connects an action to a scene property through Control Channels.

This section of the Scene Panel contains a list of all control channels available for the loaded Scene.

 Dragging Control Channels to the actions canvas is the recommended method for creating actions since it
ensures actions do not break if the scene tree structure changes.

Note: For more details on how to configure channels, see Profiles.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 414

 Actions are created based on the Type of Control Channel, which is represented by an icon.

Scene Tree
This section of the Scene Panel contains a representation of the scene tree structure of the loaded Scene, as well as
parameters and plug-ins supported as Viz Arc actions.

Actions created by dragging a parameter or plugin from the scene tree are connected using the container path.

Stage Directors
This section of the Scene Panel contains a list of any directors and sub-directors contained in the loaded Scene.

Note: For more details about Control Channels, see the Viz Artist User Guide.

Example: $ContainerName$SubContName$Sub2ContName)

Warning: To ensure actions are executed on the correct container, make sure there are no duplicate
container names in the scene hierarchy.

http://documentation.vizrt.com/viz-artist

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 415

Director Actions can be created by dragging any director to the Actions Canvas.

Hovering the cursor over each stage director (or director group) shows three buttons:

 : Sends a start command to Viz Engine.

 : Sends a continue command to Viz Engine.

 : Resets the selected stage (SHOW 0.0).

See Also

 Scene Action Types
 Viz Artist User Guide
 Viz Pilot User Guide

http://documentation.vizrt.com/viz-artist
https://documentation.vizrt.com/viz-pilot

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 416

6.6 APIs
 Viz Arc In-App Web API
 REST API

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 417

6.6.1 Viz Arc In-App Web API
Viz Arc provides a Web API that allows you to set DataMap variables, trigger specific actions or control the Playlist.

The samples below assume that Arc is running on localhost and the In-App Web API is configured to run on port
5004 . The In-App Web API port can be configured in the General Settings, under the Communication section.

Please note that this In-App Web API is only accessible when the Viz Arc application is running.

A Swagger webapp that describes every API can be found at http://localhost:5004/swagger/.

This section contains the following examples:

 Status
 ActionCanvas
 ActionExecuter
 Arena
 DataMap
 Object Tracker
 Playlist
 PlaylistExecuter
 Projects
 Profiles
 Web API Access Control
 Web Application Sample Usage

Status
The Status endpoint allows you to get basic information of the running Viz Arc instance, such as version and uptime.

GET api/v1/status

curl -s -X GET http://localhost:5004/api/v1/Status | python -m json.tool

{
 "version": "Viz Arc 1.8.0.2116",
 "license": "CORE",
 "uptime": "00:59:14.8406020"
}

Information: The samples below use curl command line tools to demonstrate usage and python to
beautify the returned JSON output. Note that these tools are not required for the Web API to function
correctly.

http://localhost:5004/swagger/index.html

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 418

ActionCanvas
The ActionCanvas endpoint allows you to retrieve all actions of a project, including information about their
position, color, id etc.. It also allows you to select an action specified by the id or name. An interactive demo page
using this API can be found at http://localhost:5004/.

GET /api/v1/actioncanvas
This endpoints returns all actions of the currently loaded project. The property "actions" contains an array of all
actions. The property tabs contains the information about the project tabs.

curl -s -X GET http://localhost:5004/api/v1/ActionCanvas | python -m json.tool

{
 "tabs": [
 {
 "name": "show",
 "isEditorOnly": false
 },
 {
 "name": "Startlist",
 "isEditorOnly": false
 }
],
 "selectedTabIndex": 0,
 "actions": [
 {
 "uuid": "a090e1c9-28ad-4c4f-976d-2727befe182d",
 "name": "Title Day 1",
 "type": "TEMPLATE",
 "actionType": null,
 "engineType": "VIZ",
 "xSector": 1,
 "ySector": 0,
 "widthSector": 1,
 "heightSector": 1,
 "tab": 0,
 "delay": 0,
 "actionColor": "#65686B",
 "textColor": "#DBDCDD"
 },
 {
 "uuid": "95c0bc26-fb63-4ffe-becf-bd42db7ae5f8",
 "name": "Startlist",
 "type": "TEMPLATE",
 "actionType": null,
 "engineType": "VIZ",
 "xSector": 0,
 "ySector": 1,
 "widthSector": 1,

http://localhost:5004/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 419

 "heightSector": 1,
 "tab": 1,
 "delay": 0,
 "actionColor": "#65686B",
 "textColor": "#DBDCDD"
 }
],
 "project": "Skating"
}

POST /api/v1/actioncanvas/select/{id | name}
Selects an action specified by the id or name.

curl -s -X POST http://localhost:5004/api/v1/ActionCanvas/select/13ddcaa8-e52a-4357-85d6-5731f3b45ebd

200 OK

ActionExecuter
The ActionExecuter endpoint allows you to execute a specific action either by using its name or its ID.

GET /api/v1/actionexecuter/{id | name}
Executes the action specified by the id or name.

curl -s -X GET http://localhost:5004/api/v1/ActionExecuter/27cc7a3b-6f90-4d88-9101-a356a1668d83

200 OK

Using the ID variant is preferable as it uniquely identifies an action. Although the name might appear multiple times
in your action collection, only the first action with the specified name is triggered.

GET /api/v1/actionexecuter/{id | name}/continue
Executes a "Continue" on a template action specified by the name.

curl -s -X GET http://localhost:5004/api/v1/ActionExecuter/27cc7a3b-6f90-4d88-9101-a356a1668d83/continue

200 OK

GET /api/v1/actionexecuter/{id | name}/out
Executes a "Out" on a template action specified by the name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 420

curl -s -X GET http://localhost:5004/api/v1/ActionExecuter/27cc7a3b-6f90-4d88-9101-a356a1668d83/out

200 OK

GET /api/v1/actionexecuter/{id | name}/update
Executes a "Update" on a template action specified by the name.

curl -s -X GET http://localhost:5004/api/v1/ActionExecuter/27cc7a3b-6f90-4d88-9101-a356a1668d83/update

200 OK

Arena
The Arena APIs allow you to control the Viz Arena integration.

GET /api/v1/arena/detectArenaCalibration
Detects the calibration.

curl -s -X GET http://localhost:5004/api/v1/arena/detectArenaCalibration | python -m json.tool

200 OK

GET /api/v1/arena/clearArenaCalibration
Clears the current calibration.

curl -s -X GET http://localhost:5004/api/v1/arena/clearArenaCalibration | python -m json.tool

200 OK

GET /api/v1/arena/clearArenaKeyer
Clears the Viz Arena keyer.

curl -s -X GET http://localhost:5004/api/v1/arena/clearArenaKeyer | python -m json.tool

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 421

GET /api/v1/arena/setArenaCamera/{id}
Sets the active arena camera.

curl -s -X GET http://localhost:5004/api/v1/arena/setArenaCamera/1 | python -m json.tool

200 OK

DataMap
You can set, read and delete DataMap variables through the Web API. An interactive web application can be found
at http://localhost:5004/DataMap.

GET /api/v1/DataMap
Gets the list of all the key-value pairs.

curl -s -X GET http://localhost:5004/api/v1/DataMap | python -m json.tool

[
 {
 "key": "Hello",
 "value": "World!"
 },
 {
 "key": "WhiteListIPRanges",
 "value": "0.0.0.0/0"
 }
]

GET /api/v1/DataMap/{key}
Gets the key-value pair identified by the specified key.

curl -s -X GET http://localhost:5004/api/v1/DataMap/key | python -m json.tool

{
 "key": "Hello",
 "value": "World!"
}

http://localhost:5004/DataMap

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 422

POST /api/v1/DataMap
Adds a new key-value pair or an array of them to the DataMap. The payload must be sent as JSON body. If the key
already exists the value is updated.

curl -s -H 'Content-Type: application/json' -d "{ 'Key': 'Hello', 'Value': 'World!' }" -X POST http://
localhost:5004/api/v1/DataMap

{
 "Key": "key",
 "Value": "hello"
}

DELETE /api/v1/DataMap/{key}
Deletes a key/value pair by sending a DELETE message, for example to delete "key2" use:

curl -s -X DELETE http://localhost:5004/api/v1/DataMap/key2 | python -m json.tool

200 OK

Object Tracker
The Object Tracker APIs allow you to control the Object Tracker integration.

GET /api/v1/objectTracker/takeTracker
Takes all active trackers On Air.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/takeTracker | python -m json.tool

200 OK

GET /api/v1/objectTracker/takeOutTracker
Takes all active trackers Off Air.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/takeOutTracker | python -m json.tool

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 423

GET /api/v1/objectTracker/previewTracker
Previews all active trackers on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/PreviewTracker | python -m json.tool

200 OK

GET /api/v1/objectTracker/previewOutTracker
Previews out all active trackers on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/PreviewOutTracker | python -m json.tool

200 OK

GET /api/v1/objectTracker/stopTracker/{id}
Stops the tracker with index {id}, starting from index 1.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/stopTracker/1 | python -m json.tool

200 OK

GET /api/v1/objectTracker/setActiveTracker/{id}
Sets the active tracker with index {id}, starting from index 1.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/setActiveTracker/1 | python -m json.tool

200 OK

GET /api/v1/objectTracker/resetPointerOffset/{id}
Resets the pointer offset of the tracker with index {id}, starting from index 1.

curl -s -X GET http://localhost:5004/api/v1/objectTracker/resetPointerOffset/1 | python -m json.tool

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 424

Playlist
You can read, trigger, preview and iterate through the playlist through the Web API. An interactive web application
can be found at http://localhost:5004/PlayList.

GET /api/v1/playlist
Gets all the tabs.

curl -s -X GET http://localhost:5004/api/v1/PlayList | python -m json.tool

[
 {
 "duration": 10.0,
 "index": 0,
 "name": "Morning",
 "rows": [
 {
 "actionUUID": "b78801bd-c802-42dd-ae11-9955c53dbfe3",
 "duration": 5.0,
 "id": "aaf0b451-1bb6-4bae-b11d-3b0c5f552e36",
 "name": "AB"
 },
 {
 "actionUUID": "6dd3107a-9487-4f32-92a0-b7eb83a1328f",
 "duration": 5.0,
 "id": "58b51c71-a904-4c95-b5d8-f42184af025e",
 "name": "CD"
 }
]
 },
 {
 "duration": 15.0,
 "index": 1,
 "name": "Afternoon",
 "rows": [
 {
 "actionUUID": "27cc7a3b-6f90-4d88-9101-a356a1668d83",
 "duration": 5.0,
 "id": "7f284bd1-a727-4e26-aea8-f417010c5386",
 "name": "Opener"
 },
 {
 "actionUUID": "955a622a-862b-4206-9658-a48b0c9f9a7e",
 "duration": 5.0,
 "id": "f43b4470-d08c-4261-8fb2-58ef97c4db28",
 "name": "Closer"
 },
 {
 "duration": 5.0,

http://localhost:5004/PlayList

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 425

 "id": "483231c0-5484-478c-9bbc-74530dafa7cd",
 "loop": false,
 "name": "old",
 "rows": [
 {
 "actionUUID": "ae7d2e75-552f-40e7-8c3d-7a8ef716809a",
 "duration": 5.0,
 "id": "c542f3d4-53d3-4aa1-82d1-8e75ae86342b",
 "name": "Show Monitor"
 }
]
 }
]
 }
]

The GET method returns all Playlist tabs and their respective rows and folders.

The screenshot above shows the query result for the "Morning" Playlist tab.

The screenshot above shows the query result for the "Afternoon" Playlist tab.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 426

GET /api/v1/playlist/{index}
Gets the content of the playlist tab, by specifying its index.

curl -s -X GET http://localhost:5004/api/v1/PlayList/0 | python -m json.tool

{
 "duration": 10.0,
 "index": 0,
 "name": "Morning",
 "rows": [
 {
 "actionUUID": "b78801bd-c802-42dd-ae11-9955c53dbfe3",
 "duration": 5.0,
 "id": "17a6ee8d-8c82-4480-9bda-32e4b9447336",
 "name": "AB"
 },
 {
 "actionUUID": "6dd3107a-9487-4f32-92a0-b7eb83a1328f",
 "duration": 5.0,
 "id": "4580c837-69a9-41b4-95dc-29b05f1ae0d4",
 "name": "CD"
 }
]
}

Starting from index 0 this call returns a single playlist tab only.

PlaylistExecuter
The PlaylistExecuter endpoint allow you to execute and preview individual playlist elements identified by their id.

GET api/v1/PlaylistExecuter/execute/{id}
Executes the playlist element identified by id.

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/execute/2628b63d-
e947-4ee6-9dd2-5c90525e2cf5 | python -m json.tool

200 OK

GET api/v1/PlaylistExecuter/continue/{id}
Continues the playlist element identified by id.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 427

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/continue/2628b63d-
e947-4ee6-9dd2-5c90525e2cf5 | python -m json.tool

200 OK

GET api/v1/PlaylistExecuter/preview/{id}
Executes the playlist element identified by id on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/preview/2628b63d-
e947-4ee6-9dd2-5c90525e2cf5 | python -m json.tool

200 OK

GET api/v1/PlaylistExecuter/previewContinue/{id}
Continues the playlist element identified by id on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/previewContinue/2628b63d-
e947-4ee6-9dd2-5c90525e2cf5 | python -m json.tool

200 OK

GET api/v1/PlaylistExecuter/playPlaylistByName/{name}
Plays every item in the playlist identified by name.

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/playPlaylistByName/myPlaylist | python -m
json.tool

200 OK

GET api/v1/PlaylistExecuter/playPlaylistByIndex/{id}
Plays every item in the playlist identified by Id.

curl -s -X GET http://localhost:5004/api/v1/PlaylistExecuter/playPlaylistByIndex/1 | python -m json.tool

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 428

Playlist Controls on the Currently Selected Playlist
The following commands are invoked against the Playlist that is currently selected in Viz Arc:

GET api/v1/playlistexecuter/executeCurrent

Executes the currently selected playlist element.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/executeCurrent

200 OK

GET api/v1/playlistexecuter/continueCurrent

Continues the currently selected playlist element.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/continueCurrent | python -m json.tool

200 OK

GET api/v1/playlistexecuter/outCurrent

Takes out the currently selected playlist element (only for template actions).

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/outCurrent | python -m json.tool

200 OK

GET api/v1/playlistexecuter/previewCurrent

Executes the currently selected playlist element on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/previewCurrent | python -m json.tool

200 OK

GET api/v1/playlistexecuter/previewContinueCurrent

Continues the currently selected playlist element on the preview channel.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/previewContinueCurrent | python -m json.tool

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 429

GET api/v1/playlistexecuter/previewOutCurrent

Takes out the currently selected playlist element on the preview channel (only for template actions).

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/previewOutCurrent | python -m json.tool

200 OK

GET api/v1/playlistexecuter/executeAndNext

Executes the currently selected playlist element and moves to the next playlist item.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/executeAndNext | python -m json.tool

200 OK

GET api/v1/playlistexecuter/gotoFirst

Selects the first playlist item.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/gotoFirst | python -m json.tool

200 OK

GET api/v1/playlistexecuter/playCurrentPlaylist

Plays every item in the currently selected playlist.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/playCurrentPlaylist | python -m json.tool

200 OK

GET api/v1/playlistexecuter/stopCurrentPlaylist

Stops the execution of the currently selected playlist.

curl -s -X GET http://localhost:5004/api/v1/playlistexecuter/stopCurrentPlaylist | python -m json.tool

200 OK

Projects
The Projects endpoint allows you to get a list of all available projects and to load a project.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 430

GET api/v1/projects
Returns a list of all available Projects, first the projects located on the Graphic Hub, then the ones on the file system.

curl -s -X GET http://localhost:5004/api/v1/Projects | python -m json.tool

[
 {
 "name": "gh:Animations",
 "lastModified": "2023-05-09T13:53:32.4633996+00:00",
 "location": 1,
 "profileIndex": 0,
 "tabs": []
 },
 {
 "name": "local:Skating",
 "lastModified": "2023-05-11T07:53:51.80198+00:00",
 "location": 0,
 "profileIndex": 0,
 "tabs": []
 }
]

In the example above, two projects were found.

The name of the project is prefixed by the keywords "gh:" or "local:"; this prefix indicates whether the project is
stored in the Graphic Hub or on the file system.

GET api/v1/projects/{id}
Returns the project with the specified id, if it exists. If two projects with the same name exist in Graphic Hub and the
local disk, the one of the local disk is returned first.

curl -s -X GET http://localhost:5004/api/v1/Projects/Animations | python -m json.tool

{
 "name": "gh:Animations",
 "lastModified": "2023-05-09T13:53:32.4633996+00:00",
 "location": 1,
 "profileIndex": 0,
 "tabs": []
}

Information: Viz Arc can store and read projects from two different locations, Graphic Hub or the local
file system. In order to distinguish the source of the project, the project's name is prefixed by the
keywords "gh:" or "local:" (for example, "gh:sunday_elections" or "local:sunday_elections").
Also, the "location" property in the responses, indicates whether the project resides on Graphic Hub (value
"1") or the file system (value "0").

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 431

GET api/v1/projects/load/{id}
Loads the project with the specified id in Viz Arc. If the id does not contain the location prefix, then Viz Arc tries to
retrieve the project with a given name by looking in the Graphic Hub first, then the file system.

curl -s -X GET http://localhost:5004/api/v1/Projects/load/local:Skating | python -m json.tool

200 OK

GET api/v1/projects/current
Gets the name and location (Local or GraphicHub) of the currently loaded project.

curl -s -X GET http://localhost:5004/api/v1/projects/current | python -m json.tool

{
 "name": "local:Skating",
 "lastModified": "2023-05-11T07:53:51.80198+00:00",
 "location": 0,
 "profileIndex": 2,
 "tabs": [
 {
 "name": "show",
 "index": 0,
 "isEditorOnly": false,
 "actions": [
 {
 "uuid": "ff1ae771-4c69-42e4-ba8a-ad98747a5477",
 "name": "Logo",
 "type": "Template",
 "actionType": "TEMPLATE",
 "engineType": "VIZ",
 ...

Profiles
The Profiles endpoint allows you to retrieve information about the available Profiles, Channels and Engines.

GET /api/v1/profiles
Returns the entire list of profiles available in Viz Arc.

curl -s -X GET http://localhost:5004/api/v1/profiles | python -m json.tool

[

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 432

 {
 "name": "Local",
 "channels": [
 {
 "name": "Local",
 "type": 1,
 "engines": [
 {
 "name": "localhost"
 }
],
 "model": {
 "engineConfigTuple": [
 {
 "item1": {
 "name": "localhost",
 "ipAddress": "127.0.0.1",
 "port": 6100,
 "launcherPort": 5644,
 "webInterfacePort": 30010,
 "webSocketPort": 30020,
 ...

GET api/v1/profiles/{id | name}
Returns the profile specified by the id or name.

curl -s -X GET http://localhost:5004/api/v1/profiles/0 | python -m json.tool

{
 "name": "Local",
 "channels": [
 {
 "name": "Local",
 "type": 1,
 "engines": [
 {
 "name": "localhost"
 }
],
 "model": {
 "engineConfigTuple": [
 {
 "item1": {
 "name": "localhost",
 "ipAddress": "127.0.0.1",
 "port": 6100,
 "launcherPort": 5644,
 "webInterfacePort": 30010,
 "webSocketPort": 30020,

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 433

 ...

GET api/v1/profiles/current
Returns the currently selected profile.

curl -s -X GET http://localhost:5004/api/v1/profiles/current | python -m json.tool

{
 "name": "Local",
 "channels": [
 {
 "name": "Local",
 "type": 1,
 "engines": [
 {
 "name": "localhost"
 }
],
 "model": {
 "engineConfigTuple": [
 {
 "item1": {
 "name": "localhost",
 "ipAddress": "127.0.0.1",
 "port": 6100,
 "launcherPort": 5644,
 "webInterfacePort": 30010,
 "webSocketPort": 30020,
 ...

POST api/v1/profiles
Sets the currently active profile.

curl -s -H 'Content-Type: application/json' -d "{ 'name': 'production' }" -X POST http://localhost:5004/api/v1/
profiles

{
 "name": "productionA"
}

curl -s -H 'Content-Type: application/json' -d "{ 'index': 0 }" -X POST http://localhost:5004/api/v1/profiles

{
 "index": 0

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 434

}

Index starts at 0 for the first profile.

Web API Access Control
It is possible to inhibit calls to the PlayListExecuter and the ActionExecuter APIs with the IP whitelisting.

IP Whitelist
You can configure the IP addresses/ranges that are allowed to use the APIs. These have to be specified using a semi-
colon (;) separated list of IP ranges (in CIDR notation). By default, the range is 0.0.0.0/0 which means all hosts can
access the API.

The IP Whitelist can be configured in three different ways:

 Manually in the General Settings(under the Communication section)
 Web Application
 Scripting

Web Application Whitelist Configuration

If you want to allow only two machines with IP addresses (for example, 192.168.1.100 and 192.168.1.142) you can
specify them by reaching the page http://localhost:5004/home/settings#datamap and set the value of the
WhiteListIPRanges key, as in the snapshot below.

Scripting Whitelist Configuration

Set Whitelist IPs through Scripting

SetData("WhiteListIPRanges", "192.168.1.100;192.168.1.142")

Web Application Sample Usage
When Viz Arc starts up, it also launches an internal In-App Web Server which host a Web Application that makes use
of some of the APIs described above.

http://localhost:5004/DataMap
http://localhost:5004/home/settings#datamap

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 435

Navigate to http://localhost:5004/ (the port can be configured in the General Settings, under the Communication
section) to see the currently loaded project in Viz Arc. For example:

1. Actions: The project loaded in Viz Arc. Click any action to execute it.
2. PlayList: Triggers all available playlists.
3. Datamap: Opens a new dialog. From here you can add, delete or modify any DataMap variable.

Triggering a Viz Arc Action from the Web Browser
You can easily trigger a Viz Arc action for the currently loaded project using its GUID or just its name. First, get the
GUID and name from the action:

http://localhost:5004/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 436

The GUID is now copied to the clipboard from where you can easily paste it anywhere else (for example, to
notepad):

Typing http://localhost:5004/api/v1/ActionExecuter/203e10df-8ba1-403c-a378-4d93186f4d06 or http://localhost:5004/
api/v1/ActionExecuter/default triggers the action.

Information: Be aware that triggering only works when Viz Arc is running and when the project that
contains the requested Action is open.

http://localhost:5004/api/ActionExecuter/203e10df-8ba1-403c-a378-4d93186f4d06
http://localhost:5004/api/ActionExecuter/default

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 437

6.6.2 REST API
Viz Arc Rest Service provides a Web API that allows you to trigger specific actions or control the Playlist.

The samples below assume that you have installed Viz Arc REST Service and that it's running on localhost and the
REST Web API is configured to run on port 9004 . The REST Web API port can be configured in the General Settings,
under the Communication section.

A Swagger webapp that describes every API can be found at http://localhost:9004/swagger/.

This section contains the following examples:

 DataMap
 Executer
 Projects
 Profiles
 Web Application Sample Usage
 Keyer

DataMap
You can set, read and delete DataMap variables through the Web API.

GET /api/v1/DataMap
Gets the list of all the key-value pairs.

curl -s -X GET http://localhost:9004/api/v1/DataMap | python -m json.tool

[
 {
 "key": "Hello",
 "value": "World!"
 },
 {
 "key": "WhiteListIPRanges",
 "value": "0.0.0.0/0"
 }
]

GET /api/v1/DataMap/{key}
Gets the key-value pair identified by the specified key.

Info: The samples below use curl command line tools to demonstrate usage and python to beautify the
returned JSON output. Note that these tools are not required for the Web API to function correctly.

http://localhost:9004/swagger/index.html

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 438

curl -s -X GET http://localhost:9004/api/v1/DataMap/key | python -m json.tool

{
 "key": "Hello",
 "value": "World!"
}

POST /api/v1/DataMap
Adds a new key-value pair or an array of them to the DataMap. The payload must be sent as JSON body. If the key
already exists the value is updated.

curl -s -H 'Content-Type: application/json' -d "{ 'Key': 'Hello', 'Value': 'World!' }" -X POST http://
localhost:9004/api/v1/DataMap

{
 "Key": "key",
 "Value": "hello"
}

DELETE /api/v1/DataMap/{key}
Delete a key/value pair by sending a DELETE message. For example, to delete "key2" use:

curl -s -X DELETE http://localhost:9004/api/v1/DataMap/key2 | python -m json.tool

200 OK

Executer
The Executer endpoints allows you to execute a specific action either by using its name or its ID.

POST api/v1/Executer
Executes the selected action. In order to identify a specific action, the user must specify the actionId, the projectId,
the profileId and the executionType.

curl -s -H 'Content-Type: application/json' -d "{ 'actionId': 'a45dbfda-d197-49ff-9995-66d3c319e1fc',
'projectId': 'gh:Sunday_Elections', 'profileId': 'Profile-1', 'executionType': 'EXECUTE' }" -X POST http://
localhost:9004/api/v1/Executer

200 OK

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 439

Projects
The Projects endpoint allows you to get a list of all available projects and to load a project.

GET api/v1/projects
Returns a list of all available Projects, first the projects located on the Graphic Hub, then the ones on the file system.

curl -s -X GET http://localhost:9004/api/v1/Projects | python -m json.tool

[
 {
 "name": "gh:Animations",
 "lastModified": "2023-05-09T13:53:32.4633996+00:00",
 "location": 1,
 "profileIndex": 0,
 "tabs": []
 },
 {
 "name": "local:Skating",
 "lastModified": "2023-05-11T07:53:51.80198+00:00",
 "location": 0,
 "profileIndex": 0,
 "tabs": []
 }
]

In the example above, two projects were found.

The name of the project is prefixed by the keywords "gh:" or "local:"; this prefix indicates whether the project is
stored in the Graphic Hub or on the file system.

GET api/v1/projects/{id}
Returns the project with the specified id, if it exists. If two projects with the same name exist in the GH and the local
disk, the one of the local disk will be returned first.

curl -s -X GET http://localhost:9004/api/v1/Projects/Animations | python -m json.tool

{
 "name": "gh:Animations",
 "lastModified": "2023-05-09T13:53:32.4633996+00:00",

Info: Viz Arc can store and read projects from two different locations: the Graphic Hub or the local file
system. In order to distinguish the source of the project, the project's name is prefixed by the keywords
"gh:" or "local:" (e.g. "gh:sunday_elections" or "local:sunday_elections").
Likewise, the "location" property in the responses, indicates whether the project resides on Graphic Hub
(value "1") or on the file system (value "0").

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 440

 "location": 1,
 "profileIndex": 0,
 "tabs": []
}

Profiles
The Profiles endpoint allows you to retrieve information about the available Profiles, Channels and Engines.

GET /api/v1/profiles
Returns the entire list of profiles available in Viz Arc.

curl -s -X GET http://localhost:9004/api/v1/profiles | python -m json.tool

[
 {
 "name": "Local",
 "channels": [
 {
 "name": "Local",
 "type": 1,
 "engines": [
 {
 "name": "localhost"
 }
],
 "model": {
 "engineConfigTuple": [
 {
 "item1": {
 "name": "localhost",
 "ipAddress": "127.0.0.1",
 "port": 6100,
 "launcherPort": 5644,
 "webInterfacePort": 30010,
 "webSocketPort": 30020,
 ...

GET api/v1/profiles/{id | name}
Returns the profile specified by the id or name.

curl -s -X GET http://localhost:9004/api/v1/profiles/0 | python -m json.tool

{
 "name": "Local",
 "channels": [

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 441

 {
 "name": "Local",
 "type": 1,
 "engines": [
 {
 "name": "localhost"
 }
],
 "model": {
 "engineConfigTuple": [
 {
 "item1": {
 "name": "localhost",
 "ipAddress": "127.0.0.1",
 "port": 6100,
 "launcherPort": 5644,
 "webInterfacePort": 30010,
 "webSocketPort": 30020,
 ...

Web Application Sample Usage
Once the Viz Arc REST service is installed, it also hosts a Web Application that uses some of the APIs described
above.

By selecting a Project and a Profile, we can see the Project's structure. By clicking on an action, Viz Arc REST
Service executes it.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 442

Keyer
The Keyer Enpoint is intended to be used to control the currently loaded precision keyer on a given output
channel, through the external Loupedeck device. It allows to select a channel, restore a temporary preset and to
restore the original action. It is intended to be used together with the Executer endpoint.

select

POST api/v1/Keyer/select

Selects the active keyer on a given channel (profileId and the channel must be specified on the POST call). When the
parameter execute is true (its default value), the action is executed as well, thus sending the keyer values on the
engine.

curl -s -H 'Content-Type: application/json' -d "{ 'profileId': 'Profile-1', 'channel' : 'cam1', 'execute' : false }" -X POST
http://localhost:9004/api/v1/Keyer/select

When a Loupedeck device is connected, it shows the current keyer values of the selected channel.

{
 "profileId" : "Profile-1",
 "channel" : "cam1",
 "execute" : false
}

Select the last loaded keyer that was executed on Profile-1, on channel cam1. If case no action has been previously
loaded through the Executer endpoint, this call returns with BadRequest.

save
The save endpoint allows to save a temporary keyer setting on the REST server. Please note that the temporary
settings are going to be lost after a REST server restart. The temporary settings are associated to the profile and
channel, so each combination of profile and channel can potentially have one temporary “preset”.

curl -s -H 'Content-Type: application/json' -d "{ 'profileId': 'Profile-1', 'channel' : 'cam1' }" -X POST http://
localhost:9004/api/v1/Keyer/save

{
 "profileId" : "Profile-1",
 "channel" : "cam1",
}

Makes a copy of the current keyer loaded on profile Profile-1 and channel cam1. It is stored as a temporary preset
and can be recalled through the restoreTemp preset.

http://localhost:9004/api/v1/Keyer/select
http://localhost:9004/api/v1/Keyer/save

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 443

restoreTemp
Restores the previously stored keyer preset, loads it on the respective output engine and loads it on the external
control device (for example, Loupedeck).

curl -s -H 'Content-Type: application/json' -d "{ 'profileId': 'Profile-1', 'channel' : 'cam1' }" -X POST http://
localhost:9004/api/v1/Keyer/restorePreset

{
 "profileId" : "Profile-1",
 "channel" : "cam1",
}

Restores the temporarily saved keyer preset loaded on profile Profile-1 and channel cam1.

restoreOriginal
Restores the original keyer preset, loads it on the respective output engine, and loads it on the external control
device (for example, Loupedeck). The original preset is the action that was executed via the Executer endpoint.

curl -s -H 'Content-Type: application/json' -d "{ 'profileId': 'Profile-1', 'channel' : 'cam1' }" -X POST http://
localhost:9004/api/v1/Keyer/restorePreset

{
 "profileId" : "Profile-1",
 "channel" : "cam1",
}

Restores the original keyer preset loaded on profile Profile-1 and channel cam1.

status
Returns the status of the currently loaded keyer. It returns whether the keyer has been modified compared to the
original keyer that was executed through the Executer endpoint.

curl -s -H 'Content-Type: application/json' -d "{ 'profileId': 'Profile-1', 'channel' : 'cam1' }" -X POST http://
localhost:9004/api/v1/Keyer/status

{
 "profileId" : "Profile-1",
 "channel" : "cam1",
}

Checks the status of the keyer preset loaded on profile Profile-1 and channel cam1. The response to the request
looks as follows:

http://localhost:9004/api/v1/Keyer/restorePreset
http://localhost:9004/api/v1/Keyer/restorePreset
http://localhost:9004/api/v1/Keyer/status

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 444

 {
 success = true,
 reason = "",
 modified = true,
}

 success is true when a comparison was able to be processed.
 reason is empty on success, otherwise it contains an error message.
 modified is true when the current keyer settings are different from the original keyer settings.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 445

6.7 Data Integration
 Singal-R

 C# Client Sample
 Viz Arc Script

 MQTT Broker
 Sample C# Snippet for Publishing a MQTT Topic to Viz Arc
 Viz Arc JavaScript Sample to Receive and Read MQTT Topics through the DataMap

 TCP Server
 Set DataMap
 Get DataMap
 Execute Action

 UDP Server
 DataMap Linking

 JSON Sample Data
 Dropdowns
 Tables

 DataMap Websocket
 Excel and CSV Integration

6.7.1 Singal-R
When running Viz Arc, a SignalR Hub waits for incoming connections internally. The Viz Arc In-App Web API portcan
be configured, see Communication under the General Settings. The hub where the various methods can be invoked
by clients is called VizArcHub.

The server supports the following methods

 setStringVariable (string varName, string value)
 setJSONVariable (string varName, string json)

Those two methods allow clients to set simple variable names with either a string value or a JSON string. Viz Arc
scripts is notified of variable changes and can process their value. The following code sample shows client setting
variables in Viz Arc:

C# Client Sample

using Microsoft.AspNetCore.SignalR.Client;

// connects to VizArcHub on localhost and default port 5004
 HubConnection connection = new HubConnectionBuilder()
 .WithUrl("http://127.0.0.1:5004/signalr/VizArcHub")
 .Build();

Information: To use an external application running a SignalR client, please use a .NET 8.0 based project.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 446

// connect
await connection.StartAsync();

// set some DataMap variable
await connection.InvokeAsync("setStringVariable", "hello", "world!");

In any Viz Arc script, the values above can be read, as in the following simple sample:

Viz Arc Script

Global.OnInit = function () {
 Console.WriteLine("data " + GetData("hello"))
 Console.WriteLine("json " + GetData("jsonData").ToString())
 Console.WriteLine("name is " + GetData("jsonData").Name.ToString())

 // subscribe to all DataMap variable changes
 SubscribeDataMap("")
}

Global.OnDataMapValueChanged = function (varName) {
 Console.WriteLine(varName + " changed to "+ GetData(varName).ToString())
 if(varName == "jsonData")
 Console.WriteLine("nams is " + GetData("jsonData").Name.ToString())
}

The method GetData returns the currently set value of the variable.

6.7.2 MQTT Broker
When the MQTT broker port is configured, an internal MQTT broker starts on Viz Arc startup. All topic changes are
transmitted to the DataMap using the MQTT topic as the key and the topic's payload as value.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 447

To test the integration you can wither use the MQTT Explorer (this tool can be useful to monitor Viz Arc's MQTT
broker as well) or a .NET core project using the following C# code:

Sample C# Snippet for Publishing a MQTT Topic to Viz Arc

// using nuget package MQTTnet.AspNetCore and MQTTnet.Extensions.ManagedClient
using MQTTnet;
using MQTTnet.Client;
using MQTTnet.Client.Options;

// ...

var factory = new MqttFactory();
IMqttClient mqttClient = factory.CreateMqttClient(); // create MQTT client

var options = new MqttClientOptionsBuilder().WithTcpServer("localhost",
1883).Build(); // create connection options
var connResult = mqttClient.ConnectAsync(options, CancellationToken.None).Result; //
connect to VizArc's MQTT broker

var message = new
 MqttApplicationMessageBuilder().WithAtLeastOnceQoS().WithTopic("local/news/
breaking").WithPayload("breaking news").Build(); // create message

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 448

var result = mqttClient.PublishAsync(message, CancellationToken.None).Result; //
publish the message

Viz Arc JavaScript Sample to Receive and Read MQTT Topics through the DataMap

var listenTopic = "local/news/breaking"

Global.OnInit = function ()
{
 SubscribeDataMap(listenTopic)
}

Global.OnDataMapValueChanged = function (varName)
{
 if(varName == listenTopic)
 news.Value = GetData(listenTopic)
}

The script above listens to changes on the "local/news/breaking" topic and updates a text box accordingly.

6.7.3 TCP Server
Viz Arc starts up a TCP server which can be used to set and get DataMap variables. The port of the server can be
configured, see General Settings.

You can set DataMap variables using a command string from a Viz Engine script:

Set DataMap

System.TcpSendAsync("resultSetDM", "localhost", 9204, "ARC*DATAHUB SET key|someValue
1.0 1.0 1.0", 1000)

The command above sets the variable key to the value someValue 1.0 1.0 1.0. The | character separates the key from
the value. This value can then be further processed in Viz Arc.

To read back a value from the DataMap in Viz Arc you can use the GET command like in the sample below.

Get DataMap

Dim ret = System.TcpSend("localhost", 9204, "ARC*DATAHUB GET key", 1000)

The Viz Engine script variable ret contains the value of key.

You can execute an action using a command string from a Viz Engine script:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 449

Execute Action

System.TcpSendAsync("resultSetActionName", "localhost", 9204, "ARC*ACTION EXECUTE
loadSceneA", 1000)
System.TcpSendAsync("resultSetActionGUID", "localhost", 9204, "ARC*ACTION EXECUTE
49c525fa-0ce8-46e1-bae4-acfb4abdb629", 1000)

The commands above search for actions loadSceneA by name and 49c525fa-0ce8-46e1-bae4-acfb4abdb629 by
GUID and execute them if they can be found in the current project.

6.7.4 UDP Server
Viz Arc starts up an internal UDP server used to set DataMap variables. The port of the server can be configured,
see General Settings (default 9304).

The syntax to be used when updating or setting a DataMap variable is: key|value \0

The pipe symbol | is used to separate the key from the value. A message is terminated with the character \0.

6.7.5 DataMap Linking
Some scripting UI components like Text, Int or Double have the properties Linked Data Key and Linked Data
Query.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 450

The Data Key entry can accept any key name used in a DataMap entry. As an example add a key matchResult using
the web UI to insert key/value pairs on Viz Arc.

Enter matchResult as Linked Data Key and the text value updates to the previously entered data.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 451

For more complex data structures such as .json strings, the Linked Data Query can be used.

JSON Sample Data

[
 {
 "matchID":4242,
 "Home":"City A",
 "Away":"City B",
 "HomeScore":4,
 "AwayScore":2
 },
 {
 "matchID":4243,
 "Home":"FC A",
 "Away":"FC B",
 "HomeScore":0,
 "AwayScore":1
 }
]

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 452

The DataMap after adding the above .json using the matches key.

Enter a JSONPath string $[0].HomeScore to get the home score of the first .json array element.

Instead of using constant values for indexing the .json array a variable can be used instead. A variable must be
enclosed in % character and should be the ID of an existing scripting UI element.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 453

$[%dropdown_0%].HomeScore gets resolved to $[1].HomeScore as the dropdown value of the dropdonw_0
component is 1.

In order to force an evaluation of the expression of the Linked Data Query, use the function UpdatateDataLink
available on all scripting parameters.

The following sample forces a re-evaluation of the Linked Data Query on parameter int_0 whenever the value of the
dropdown dropdown_0 changes.

Global.OnParameterChanged = function (id)
{
 if(id == "dropdown_0")
 int_0.UpdateDataLink()
}

Dropdowns
Dropdowns can be populated using Queries that return arrays, for example:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 454

In this case, the query $[*]['matchID'] selects the matchID’s of all array elements.

Tables
Tables can be populated in a similar manner as dropdowns:

The query $[*]['Home','Away','HomeScore','AwayScore'] returns an array containing the four selected members
Home, Away, HomeScore and AwayScore in this order. The calculated array looks like:

["City A", "City B", 4, 2, "FC A", "FC B", 0, 1]

It is important to note that the Table needs to have the matching columns in place, in this sample the table has
been prepared to have the first two columns to be strings and the last two columns to be integer types.

The table is then populated row by row trying to match the resulting array of the query.

To learn more about the JSONPath syntax, please refer to https://goessner.net/articles/JsonPath/.

6.7.6 DataMap Websocket
A client can connect to Viz Arc's DataHub socket on the endpoint ws://hostname:5004/api/v1/ws, where hostname
is the host name where Viz Arc is running. You can subscribe to DataMap variable changes by sending a JSON string
like in the following examples.

To register to changes of someDataKey send a JSON setting like this through the websocket:

{
 "type" : "DataMapSubscribe",
 "value" : "someDataKey"
}

To register to all changes of all keys use an empty string as value.

https://goessner.net/articles/JsonPath/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 455

{
 "type" :"DataMapSubscribe",
 "value" :""
}

Whenever a DataMap variable changes you receive a JSON answer on the websocket like this:

{"type":"DataMap","value":{"key":"someDataKey","value":"Hello World some data"}}

6.7.7 Excel and CSV Integration
The File Parameter script element has a couple of properties which allow you to watch an Excel or .csv file and load
it whenever there are changes to the contents of the file. It can load the raw contents of the file or the containing
table can be converted into a JSON format. The data is stored in both cases into the DataMap.

Starting from a Excel Sheet, define for example column headers Valid, Position and Score and enter some rows
with values.

Add in a template or the global script a File Parameter and a Table UI element. Select an Excel or .csv file and check
the flag Has Column Header to indicate that the first row contains the headers. Check the Watch File option to
update the data anytime the file is saved to disk. Specify a variable key of your choice in Data Map Name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 456

 Read raw file content: Reads the plain file content without processing it.
 Column Separator: Defines the column separator for .csv files. Autodetects the separator when blank.
 Table Sheet: Specifies the Excel sheet to read. You can use the string name of the table or the index of the

sheet (starting from 1). If the field is left empty, the first sheet is read.
 Start Cell: Specifies a row/column offset using Excel style syntax where the table content starts (for

example, C2 would start to read from row 2 and column 3). If left empty, row/column is 1.
 End Cell: Specifies a row/column offset using Excel style syntax where the table content ends (for example,

limit the table to cell F9 would mean to crop the data at column 6 and row 9). Auto-detects the row and
column count when empty.

 Has Column Header: Specifies whether the the table contains header information in the first row. Uncheck
if the table does not contain header information.

 Convert to JSON: Converts the table into a JSON format. The above example would be converted into this:

[
 {

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 457

 "Valid": 0,
 "Position": 1,
 "Score": 1.1
 },
 {
 "Valid": 1,
 "Position": 2,
 "Score": 2.2
 },
 {
 "Valid": false,
 "Position": 3,
 "Score": 3.3
 },
 {
 "Valid": true,
 "Position": 4,
 "Score": 4.4
 }
]

Create a Table parameter and check the flag Match Linked Header Columns in order to match the column header
names of the file with the column names of the scripting table. Otherwise, the columns are matched in order. Check
the option Match Linked Data Rows to match the number of rows of the data sheet with the number of rows in the
script table. Check the Match Linked Data Columns flag to create automatically the columns as they are in the
excel sheet. This will not work when Match Header Columns is enabled. Specify the same DataMap key that has
been previously specified in the File Parameter in Linked Data Key.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 458

When you choose to convert the table into a JSON, you can use the Linked Data Query (for example, for a
DropDown component to populate those elements with a column of a table):

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 459

Using a query like $.[*].Flag as Linked Data Query populates the DropDown with a list of Flags specified in
the Excel sheet.

On the DataMap an additional key is generated with a postfix _LASTUPDATED containing a Date and Time string
indicating the time when the data has been last read.

The date string can be easily converted to a Date object within a JavaScript script:

let dt = new Date(GetData("dataSheet_LASTUPDATED")) // create a date object
Console.WriteLine("updated sheet at: " + dt.getHours() + ":" + dt.getMinutes() + ":"
 + dt.getSeconds())

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 460

6.8 Integrations
 Art-Net DMX Integration
 Loupedeck
 MOS Integration
 Stream Deck
 Companion
 Viz Arena
 Working with Unreal Engine
 Timecode from Plura or NDI

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 461

6.8.1 Art-Net DMX Integration
Art-Net is a data distribution protocol that allows DMX lighting data to be transported over an ethernet network.

 Usage with Light Action
 Usage with Precision Key Action
 Usage with Template Actions
 Enabling and Disabling DMX Events
 Scripting

Usage with Light Action
Select a scene containing Viz Engine version 5 based lights and load it into Viz Arc. Drag the light from the scene tree
to the action canvas to create a Light Action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 462

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 463

Open the context menu and select the Connect to ... entry.

In the wizard window that opens select the DMX tab.

When the Auto learn option is enabled, the panel displays the last Universe and Channel that has changed. It can
be used to easily identify a hardware slider or a knob.

The Raw Value displays the received raw value in the range of [0..255]). The Universe and Channel values can be
entered manually as well.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 464

The Min/Max Value determine the range where this channel is to be mapped.

Once a property has been mapped, a small horseshoe magnet icon indicates the presence of a mapping. A tooltip
shows the mapped Universe and Channel.

In case more light need to be mapped in a similar fashion as the first one, the easiest approach is to duplicate the
action and configure DMX offsets on the duplicated action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 465

Copy the full path of the second light either by copying it from the scene tree directly or enter the tree path
manually.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 466

Enter an appropriate Universe/Channel offset the DMX OFFSET line.

The overall DMX mapping can be viewed in the Config Settings panel under the Shortcuts section.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 467

From here it is possible to remove a mapping and to re-adjust the minimum and maximum range mapping.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 468

By right clicking on the action the action can be highlighted on the action canvas.

The rendered output of 2 virtual viz lights mapped through physical lights.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 469

The physical lights controlled by a DMX light console where channel 0-3 are RGB of the first light, channel 4 is
mapped to the intensity and with an offset of four channels.

The second light is mapped on sliders 5-9 of the console.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 470

Usage with Precision Key Action
The same way as in the Light Action, DMX signals can be used to control any floating point value in the Precision Key
Action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 471

Usage with Template Actions
DMX signals can be used on double parameters only within Template Actions.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 472

A sample of two double parameters representing a percentage connected to a DMX lighting control

Enabling and Disabling DMX Events
On the bottom right status bar of the main window, you can cut-off all DMX events by clicking the button.

When the events are disabled, the icon is colored in orange. Click again to enable events.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 473

The events still arrive to the configuration wizard so you can still map DMX events to UI elements.

Scripting
All DMX events can be intercepted and processed using the OnDMXEvent callback method. Additional
methods EnableDMX, DisableDMX and IsDMXEnabled are available to enable and disable DMX events.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 474

6.8.2 Loupedeck

Getting Started
Start Viz Arc and then either select an existing Viz Arc project or create some chroma or transformation actions. It is
sufficient to select any of those actions to modify its content. You can also edit the action and see the values
changing when changed through the Loupedeck device.

Precision Keyer
On the Loupedeck device touch the Viz Arc Control button and in case a chroma action has been selected, the
device shows with the first page of the chroma settings.

From here the Hue, Saturation, Opacity and Transparency can be changed using the dial buttons. The buttons on
the top row change Viz Engine's preview output mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 475

Touch the right arrow to get to page two where settings related to the denoise can be set.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 476

Page three allows you change the despill CMY color and the backing plate RGB color.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 477

Page four allows you enable/disable shadows and highlights and change their respective parameters.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 478

Page five allows you to change the lightwrapping edge parameters.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 479

Page six allows to change more lightwrap parameters.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 480

Page seven allows you to manipulate the saturation and RGB lift.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 481

Page eight allows you to change gain RGB and gamma RGB.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 482

Transformations
Select a transformation action from the action canvas or from the map view.

The first page allows you to change position and rotation of the graphics element.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 483

The second page allows you to scale the graphics object. Select Lock, Single or Proportional for the scaling mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 484

Other Functions
The Execute Action allows the selection and execution of a specific Viz Arc action from the Loupedeck device and is
not limited to chroma or transformation actions.

Click on the Execute Action item to create a new command.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 485

In Viz Arc, look for the actions you want to map on the Loupedeck device, select them, right click and select Copy
GUID to Clipboard.

Copy the GUID's and names to notepad or similar and use either the name or the GUID and copy it over to the
Loupedeck Execute Action Editor. Enter a name for the button and save the command.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 486

Under Stored Viz Arc actions you can find the previously defined actions. Drag them to any of the free buttons on
the Loupedeck panel.

By touching the buttons, the action is automatically selected, highlighted and executed in Viz Arc. The action to be
executed must be present on the currently opened project or the button has no effect.

Limitations
Contemporary changes of values through the Loupedeck device and the Viz Arc action UI might result in
unexpected behavior. The changes made through the Viz Arc UI are not instantly reflected on the Loupedeck device.
You need to deselect and reselect the action in Viz Arc to push changes back to the external device.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 487

6.8.3 MOS Integration
The MOS integration allows you to trigger single actions of any project from a newsroom rundown.

Prerequisites

 Installation of Viz Arc Web Service.
 A Viz Arc Rest license.
 A Viz Pilot Edge installation.

https://www.vizrt.com/products/viz-pilot/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 488

 A newsroom system or Viz Mosart.

Check the Set-up
The Viz Arc REST Web API runs as a Windows service and does not need to be installed on the same machine where
Viz Arc is running. If it runs on a different location it only has access to the projects stored on the Graphic Hub. It is
recommended to also install Viz Arc, as the configuration is done through the Viz Arc configuration panel. It is
important to configure the following settings: profiles, the Graphic Hub REST location and the Viz Arc REST Web API
Port.

The server should respond as shown in the image below:

Test the Server: You can test the server by entering the host name, the configured port (default 9004 for

HTTP and 9005 for HTTPS) and the mos-plugin endpoint. For example, https://arc-server.my-
company:9005/mos-plugin or for insecure connection http:// arc-server.my-company :9004/mos-plugin.

https://www.vizrt.com/products/viz-mosart/
https://bgomsevizarc.vizrt.internal:9005/mos-plugin
https://bgomsevizarc.vizrt.internal:9005/mos-plugin
https://bgomsevizarc.vizrt.internal:9005/mos-plugin
https://bgomsevizarc.vizrt.internal:9005/mos-plugin

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 489

Usage Workflow
1. Prepare action(s) in a Viz Arc project. For example, a Viz or Unreal Scene Loader Action:

Note: Further configuration of the Database Parameters, such as
moseditor_arc_url, moseditor_arc_schema and moseditor_arc_label, can be found in the section Setup
and Configuration > Viz Arc of the Pilot Edge documentation.

Note: Please refer to the Viz Mosart documentation for further configuration of the MSE Host for Viz Arc.

http://docs.vizrt.com/viz-pilot-edge.html
http://docs.vizrt.com/viz-mosart.html

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 490

2. Save the project (preferably on Graphic Hub).
3. Open the Viz Pilot Edge Newsroom plug-in and select the saved project:

4. Select the project from the Projects dropdown, then select the profile to be used for the playout from the
Profiles dropdown.

5. Finally, select the action to be played out from the Actions tab. Select All or any specific Viz Arc Tab to filter
the actions. You can also navigate the canvas view and select the action by clicking on it. The action is NOT
executed at any time while navigating this panel:

6. Drag the action from the Viz Pilot Newsroom plug-in into the newsroom system rundown.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 491

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 492

6.8.4 Stream Deck
This section describes the various Stream Deck plug-ins for Elgato's.

Execute Action
Drag and drop the Execute Action item to any of the Stream Deck buttons. The action lets you select an Action from
the currently loaded project by selecting any of the actions.

Note: Most plug-in actions require Viz Arc to be running.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 493

Note that the action is NOT executed when selecting it by clicking on it. Once the action has been selected, the
button shows up with the action icon and action name.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 494

The name can be customized through the Title property editor.

The background can be customized as you please using a wide range of sources and editors.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 495

An example loading an icon from a .jpg file.

Playlist
The Playlist action lets you control various aspects of Viz Arc's playlist.

 Execute Selected Playlist Row: Plays the currently selected playlist element.

 When executing: Once the Viz Arc Action to be executed has been selected, pushing the button executes the
action only if Viz Arc is running and the project from which the action originates is currently opened. If the
action cannot be found or Viz Arc is not running, a small triangle shows indicating that the execution did not
succeed.

 This icon appears when the action is not in the current project loaded in Viz Arc and therefore cannot be
executed because it is unreachable.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 496

 Execute Selected Playlist Row And Next: Plays the currently selected playlist element and advances to the
next playable playlist element.

 Preview Selected Playlist Row: Previews the selected playlist element.
 Go to First: Selects the first playlist element.
 Play Current Playlist: Plays the currently selected playlist from the selected item on.
 Stop Current Playlist: Stops the currently selected playlist.
 Play Playlist By Name: Selects and plays the playlist by the specified name. If the name is ambiguous, it

plays the first occurrence.
 Play Playlist By Index: Selects and plays the playlist specified by the given index, where 0 is the first

playlist.
 Change Active Tab: Selects the tab by the specified name.

Refer to the playlist to learn more about Viz Arc's playlist functionality.

Script Callback
The Script Callback action triggers Viz Arc script functions that may be defined in the global script or a template.

The Payload can be any string passed to the script method.

A sample Viz Arc script might look like this:

Viz Arc Script Sample

function printSDEvenyInfo(sdEvent)
{
 // print all the available information for a StreamDeck event
 Console.WriteLine("StreamDeck Event Info:")
 Console.WriteLine("Device Index: " + sdEvent.DeviceIndex)
 Console.WriteLine("Device ID: " + sdEvent.Id)
 Console.WriteLine("Column: " + sdEvent.XKey)
 Console.WriteLine("Row: " + sdEvent.YKey)
 Console.WriteLine("Payload: " + sdEvent.Payload)
}

Global.OnStreamDeckKeyDown = function (sdEvent)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 497

{
 printSDEvenyInfo(sdEvent)

 // start an animation when StreamDeck key is down
 GetAction("startAnimation").Execute()
}

Global.OnStreamDeckKeyUp = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)

 // stop an animation when SrreamDeck key lifts up again
 GetAction("stopAnimation").Execute()
}

The script above executes the startAnimation action when the Stream Deck button is pressed and the
stopAnimation action when the button is released.

The available script callbacks are:

 OnStreamDeckKeyDown: Invoked when the key is pressed.
 OnStreamDeckKeyUp: Invoked when the key is released.
 OnStreamDeckDialUp: Invoked when a dial is pressed.
 OnStreamDeckDialDown: Invoked when a dial is released.
 OnStreamDeckDialRotate: Invoked when a dial gets rotated.
 OnStreamDeckTouchTap: Invoked when a user tapped a touch area button.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 498

Object Tracker
The Object Tracker action lets you execute Object Tracker related macros.

 Take Tracker: Takes all active trackers On Air.
 Take Out Tracker: Takes all active trackers Off Air.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 499

 Preview Tracker: Previews all active trackers.
 Preview Out Tracker: Previews out all active trackers.
 Stop Tracker: Stops all active trackers.
 Set Active Tracker: Selects the currently active tracker by index, starting at 1.
 Reset Pointer Offset: Resets all pointer offsets.

Refer to the Object Tracker User Guide for more information.

Arena
The Arena action lets you execute Viz Arena related macros.

 Detect Arena Calibration: Detects the calibration of the current image, equivalent of pressing the shortcut
D in Viz Arena.

 Clear Arena Calibration: Clears the calibration, equivalent of pressing the BACKSPACE button in Viz Arena.
 Clear Arena Keyer: Clears the keyer, equivalent of pressing C in Viz Arena.
 Set Arena Camera: Selects the current camera for both Viz Arena preview and program feeds.

Refer to the Viz Arena Integration documentation for more information.

DataMap
The DataMap action allows you to set a Viz Arc DataMap variable.

https://docs.vizrt.com/viz-arc

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 500

Execute REST Action
The Execute REST Action allows you to launch Viz Arc actions using the REST service which does not require Viz Arc
to be running.

You need to specify a project, an action and a profile on which to execute the action.

You can also navigate the action canvas and tabs to select an action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 501

Load Project
The Project Loader allows to load a project from Graphic Hub or a local file based project. Select a project to be
loaded from the drop down menu.

Viz Arc Launcher
With the Viz Arc Launcher, you can start Viz Arc in case it is not running with a specific project with optional
command line arguments.

This plug-in relies on an installed Viz Arc Unreal Loader service. Change the Launcher address to a different host/
port if the Unreal Launcher and Viz Arc are installed on a remote host.

Shortcut
The Shortcut action lets you execute Viz Arc's shortcuts.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 502

See Also

 Keyboard Shortcuts

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 503

6.8.5 Companion
This section describes the various actions in Companion module for Bitfocus.

 Action - Execute
 Action - Execute (REST)
 Arena
 DataMap
 Object Tracker
 Playlist
 Load Project
 Script Callback
 Shortcut
 Viz Arc Launcher

Note: Most actions require Viz Arc to be running.

Note: The companion app doesn't allow you to load or fill data dynamically. Therefore, it's very important
to press the blue Learn values button every time you select a filter.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 504

Action - Execute
Drag and drop the Execute action to any of the page buttons. The action lets you select an Action from the currently
loaded project by selecting any of the actions.

The button turns black if there is an incorrect configuration. Try to open the action, click the Learn values button
and check the configuration.

Action - Execute (REST)
The Execute REST Action allows you to launch Viz Arc actions using the REST service which does not require Viz Arc
to be running.

You need to specify a project, an action and a profile on which to execute the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 505

The button turns black if there is an incorrect configuration. Try to open the action, click the Learn values button
and check the configuration.

Arena
The Arena action lets you execute Viz Arena related macros.

 Detect Viz Arena Calibration: Detects the calibration of the current image, equivalent of pressing the
shortcut D in Viz Arena.

 Clear Viz Arena Calibration: Clears the calibration, equivalent of pressing the BACKSPACE button in Viz
Arena.

 Clear Viz Arena Keyer: Clears the Keyer, equivalent of pressing C in Viz Arena.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 506

 Set Viz Arena Camera: Selects the current camera for both Viz Arena preview and program feeds.

Refer to the Viz Arena Integration documentation for more information.

DataMap
The DataMap action allows you to set a Viz Arc DataMap variable.

Object Tracker
The Object Tracker action lets you execute Object Tracker related macros.

 Take Tracker: Takes all active trackers On Air.
 Take Out Tracker: Takes all active trackers Off Air.
 Preview Tracker: Previews all active trackers.
 Preview Out Tracker: Previews out all active trackers.
 Stop Tracker: Stops all active trackers.
 Set Active Tracker: Selects the currently active tracker by index, starting at 1.
 Reset Pointer Offset: Resets all pointer offsets.

Refer to the Viz Object Tracker manual for more information.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 507

Playlist
The Playlist action lets you control various aspects of Viz Arc's playlist.

 Execute Selected Playlist Row: Plays the currently selected playlist element.
 Execute Selected Playlist Row And Next: Plays the currently selected playlist element and advances to the

next playable playlist element.
 Preview Selected Playlist Row: Previews the selected playlist element.
 Go to First: Selects the first playlist element.
 Play Current Playlist: Plays the currently selected playlist from the selected item on.
 Stop Current Playlist: Stops the currently selected playlist.
 Play Playlist By Name: Selects and plays the playlist by the specified name. If the name is ambiguous, it

plays the first occurrence.
 Play Playlist By Index: Selects and plays the playlist specified by the given index, where 0 is the first

playlist.
 Change Active Tab: Selects the tab by the specified name.

Refer to the playlist to learn more about Viz Arc's playlist functionality.

Load Project
The Project Loader allows to load a project from Graphic Hub or a local file based project. Select a project to be
loaded from the drop down menu.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 508

Script Callback
The Script Callback action triggers Viz Arc script functions that may be defined in the global script or a template.

The Payload can be any string passed to the script method.

A sample Viz Arc script might look like this:

Viz Arc Script Sample

The available script callback is OnCompanionKey.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 509

Shortcut
The Shortcut action lets you execute Viz Arc's shortcuts.

Viz Arc Launcher
With the Viz Arc Launcher, you can start Viz Arc in case it is not running with a specific project with optional
command line arguments.

This plug-in relies on an installed Viz Arc Unreal Loader service. Change the Launcher address to a different host/
port if the Unreal Launcher and Viz Arc are installed on a remote host.

You can also change Command Line Arguments.

Action Feedbacks Tab
The Feedback tab contains a list of all feedback related to that action. They can be disabled or enabled as desired.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 510

Logs
In the Connection tab, you can view the Logs which can be very useful for finding any problems related to the action
configuration.

Request Error feedback: Once the Viz Arc Action to be executed has been selected, pushing the button
executes the action only if Viz Arc is running and the project from which the action originates is currently
opened. If the action cannot be found or Viz Arc is not running, the background starts to blink red.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 511

6.8.6 Viz Arena

Configuration
First of all you have to to enable the Viz Arena panel:

 Go to the Viz Arc Configuration.

 Select the Vizrt System tab and press Enabled on Viz Arena.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 512

 Insert the correct IP address of the workstation where Viz Arena resides and the port of the API server.

The Viz Arena status icon is located in the status bar (on the bottom right).

It turns green after a while if the IP address and port inserted are correct, otherwise it remains red.

Now it is available to press the Arena button on the "Tool toolbar" (on the leftmost portion of the window), the
interface looks similar to this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 513

Features
The Arena tab presents multiple features:

 Actions panel (1), see Actions View for further information
 Script panel (2), see Script View for further information
 Output view panel (3)
 Settings panel (4)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 514

Output View
The Output View shows the NDI stream, both video and metadata, provided by Viz Arena. Since it is very important
to see any changes of the calibration status, at the very top of the view there is line that show its current value:

 Green if the calibration is good.
 Red if the calibration is lost.

Actions

Object Position

This action enables to position any selected control object (in the Action Panel) on the field (see image above). As a
visual aid, the cursor turns into a cross when over the output view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 515

Mask Edit

This action enables to adjust the color model used for calibration and by the Viz Engine for keying during a live
game. Add brush strokes to improve the classification of the foreground and the background to refine the color
model.

This action also turns on the visualization of the mask:

 Color mask

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 516

 Black and white mask

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 517

It is possible to toggle between the two modes see Settings panel > Mask > Back and White . During a live game, it
is advised to regularly observe the output of the keying mask to ensure that the graphics are well rendered on Viz
Engine and to provide the best possible tracking quality.

NDI Info

This button adds a new floating Info Panel to the interface.

 Click on the gear and the panel expands showing all the information that can be visualized:

Click again on the gear to exit from configuration mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 518

 Click on the to close the panel.
 Grab the header to move the panel around and place it anywhere.

There is no limit to the number of panels that can be added.

Settings Panel

Calibrations

 Select a Camera/Calibration for both preview and program feed by clicking on the calibration name.
 Detect Calibration [D]: Detects the calibration of the current image. Click this button (or press the D button)

if the tracked calibration is off from the actual field lines.
The calibration can be cleared using the keyboard shortcut BACKSPACE.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 519

Keying Presets

 Select a preset for preview feed by clicking on the preset name.

 The preset that is currently On Air is marked with a red label.
 If the On Air preset has any local changes that have not yet been applied to the output rendering, they are

marked with an orange exclamation mark .

 Press to update the output rendering.

 Press to remove the selected preset from the list. If it is the preset On Air, the button does nothing.

 Press to add a new empty keying preset to the list. The name is the one inserted in the text
box next to the button.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 520

Mask

 Black and White: Toggles the style of the keying mask.
 Mask Color: Selects the background keying mask color used for rendering which is most suitable for the

playing field. Click on the colored rectangle and a new panel appears. Here it is possible to choose the mask
color.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 521

 Background 1: Interacts with the background color model of the preset. Right click on the button and the
color panel shows (see above), this changes the color of the stroke.

 Background 2: Interacts with the background logo color model of the preset. Right click on the button and
the color panel shows (see above), this changes the color of the stroke.

 Foreground 1: Interacts with the foreground color model of the preset. Right click on the button and the
color panel shows (see above), this changes the color of the stroke.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 522

Controls

 For a better understanding of each control please refer to the Viz Arena User Guide.

 Going over with the mouse provides a brief description of the relative control.
 Clear Color Model [C]: Clears the stored keying information about the current preset and starts updating

the color model from scratch. Alternatively, use the shortcut C on the keyboard.

Startup

Using the command line parameter --a or --arena , it is possible to start Viz Arc directly with the Viz Arena tool
visible.

Troubleshooting
It may happen on multi-GPU machines that the output area remains black.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 523

In this case, configure the OpenGL Rendering GPU for the Viz Arc executable through the NVIDIA control panel.

Make sure to select the GPU that is connected to the connected Monitor. It might be assigned by default to the most
powerful GPU in the system.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 524

6.8.7 Working with Unreal Engine
Viz Arc lets you import Unreal Levels from a specific project (selected and opened manually in Unreal Engine
software).

First, open the Unreal Engine software and select a project. Once the project is loaded, click the Play button to
switch to Play mode.

Note: Please see Configuring Profiles to correctly configure Unreal Engine in Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 525

In Viz Arc, click the ADD SCENE icon on the left side of the window and select the Unreal panel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 526

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 527

Once selected, you need to load the scene by clicking the LOAD SCENE icon in order to retrieve details.

Double-click the root folder to show the list of elements. To create an action, drag and drop available content from
the tree into the actions area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 528

Load an Unreal scene by right-clicking on an empty space in the actions area.

Once the relative action has been created, in edit mode, click Select Unreal Level to open the browse window.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 529

Select the desired level and double-click it to load.

See Also

 Supported Unreal Actions

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 530

Supported Unreal Actions
Viz Arc recognizes the following types of Unreal actions:

 Scene Loader
 Active
 Position/Rotation/Scaling
 Sequence
 Animation
 Text
 Mesh
 Light
 Presets
 Rundown
 Blueprint
 Level Blueprint
 Dispatcher

Scene Loader
Read more about the Viz Arc Engine Service.

Active

Active action lets you switch a container to visible or invisible. It’s possible to set the container to ON, OFF
or TOGGLE between the two.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 531

Position/Rotation/Scaling

This action lets you set the position, rotation and scaling of the selected container. It’s also possible to scale

proportionately by clicking the lock icon next to the scaling panel.

It is also possible to change Position and Rotation of a Streaming Level.

The coordinate system toggles the behavior of the positional XYZ axis, the default UNREAL is a Z-up left-hand
system, while VIZ is Y-up right-hand system. It might come handy to use the Vizrt coordinate system when objects
needs to be positioned relative to each other in the two engines.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 532

Sequence

A Sequence action lets you control a sequence level created in Unreal Editor:

START animation.

PAUSE an animated director.

STOP an animated director.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 533

CONTINUE an animation to the next step.

CONTINUE in REVERSE mode.

PLAY from a specific KEYFRAME.

PLAY from a specific keyframe in REVERSE mode.

GO directly to a specific KEYFRAME.

PLAY from a specific keyframe to a specific keyframe.

PLAY from a specific keyframe and then loop between two specific keyframes.

The play-rate and the number of loops can be set on any play action selected.

A play-rate of 1.0 represents normal playback rate while a play-rate of 2.0 means double playback speed.
Select as loop mode either Single Loop, Multiple Loops (specifying the number of loops) or Infinite Loop.

Clicking PLAY FROM, PLAY FROM REVERSE, GO TO, PLAY FROM TO or PLAY AND LOOP FROM TO makes a menu
appear where you can set the position in frames, seconds or as a marker.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 534

A Mark can be set on the unreal sequencer editor by right clicking the timeline and selecting Add Mark or in case a
marker already exists, its label and position can be modified.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 535

Motion Design Sequence

Motion Design provides the ability to have sequencers within the scene to manage the Rundown component.

In Viz Arc, you can use these sequencers separately from the Rundown components. They are identified in this way:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 536

Animation

Animation action lets you assign an animation to the selected Unreal actor or browse a custom animation from
those available by clicking the Animation icon. Animations can also be played, continued, stopped and/or looped.

Text

Text action lets you modify a text element in an Unreal level and set X and Y scaling.

Mesh
This action lets you change the static mesh and the material or material instance properties of a Static Mesh Actor.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 537

Use the checkbox Set Mesh when the action should set the static mesh and check the Set Material when the action
should set any specific material or material instance property.

Light
This action lets you change lights propertis such as Intensity, Temperature and more specific ones.

Mobility Property on Unreal Actor: The
mobility attribute on the unreal actor needs to be either Movable or Stationary to make the mesh
editable.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 538

There are four different types of light action:

 Directional Light
 Spot Light
 Point Light
 Rect Light

Arc automatically recognizes them and creates an action with specific porperties.

Presets
Unreal Engine Version 4.26 introduces Remote Control Presets. This allows the user to tag easily attributes on the
outliner to be exposed to external control applications. Those presets can be set using a Preset Action.

A preset on the Unreal Engine might look like this, exposing transformations of object, light color, a blueprint
function or visibility of a mesh.

https://dev.epicgames.com/documentation/en-us/unreal-engine/remote-control-presets-and-web-application-for-unreal-engine

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 539

When loading a level into Viz Arc, additionally to the outliner, the presets are displayed below in
the PRESETS panel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 540

Drag any of the presets to the action canvas to create a Preset Action.

Make sure that -RCWebControlEnable -RCWebInterfaceEnable are added to

the UELoaderCommandLine registry variable of the Unreal launcher.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 541

If Unreal Web Interface is enabled, we can use it as action.

Unreal Engine's Binding Address: By default, the Unreal Engine's web interface binds to the local
network interface only, such that only 127.0.0.1 or localhost addresses work with the Preset Action. To
start the web service on all available network interfaces add this section to the DefaultEngine.ini of your
Unreal project:
[HTTPServer.Listeners]

DefaultBindAddress = 0.0.0.0
For more information, see the https://dev.epicgames.com/documentation/en-us/unreal-engine/remote-
control-for-unreal-engine.

https://dev.epicgames.com/documentation/en-us/unreal-engine/remote-control-for-unreal-engine

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 542

Drag the icon to the action canvas to create a Remote Control Action.

Any changes made in the view is sent to all Unreal Engines in the selected channel that have an active web
interface. It is very important that both scenes have the same preset with the same properties.

If you lose connection to a Unreal Engine web interface or want to establish a new one, just click on the Refresh
button.

Rundown
Unreal Engine Version 5.3 introduces the Motion Design plug-in. The Rundown component in Unreal Engine looks
like this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 543

Viz Arc Rundown action allows you to select the desired page and perform actions such as Take In, Take Out, Take
Next and Continue.

Blueprint
A Blueprint action can be used to set public Blueprint variables and invoke functions on it.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 544

1. If enabled, the function to be called when executing this action.
2. The variable name.
3. The Tooltip of the variable.
4. The actual value.
5. Enable or disable setting this variable.
6. Function parameter name (if function has parameters).
7. Function parameter value to send (if function has parameters).

A Blueprint Action can be created by dragging and dropping the blueprint icon from the outliner to the action
canvas. The Level Blueprint can be found in the outliner view

under the Level Blueprint folder.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 545

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 546

Blueprint action contains a list of visible values (set as public and editable in Unreal). To make these values visible
and accessible to Viz Arc, you must activate them in the Blueprint window:

To Trigger Blueprint Values

It's possible to trigger values from Viz Arc into Unreal’s Blueprint. This section describes the procedure step-by step.
In this sample, an integer value is set from Viz Arc and displayed in the render output of the Unreal Engine.

 First, add a Blueprint Class to the project content by clicking the Add button in the Content Browser view,
select Blueprints and then Blueprint Class.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 547

 Select Actor.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 548

 Rename the new Blueprint (for example, printFromArc), then drag and drop it to the render viewport.

 Open the Blueprint by clicking on the Edit printFromArc link in the Outliner view. Create a new variable and
rename it to omo and set the type to Integer.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 549

 Select the Event Graph tab and right click on the blueprint canvas and create a new Custom Event.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 550

 Rename the event to triggerFromArc and connect the Exec node to a Print String node.

 Drag and drop the omo variable to the blueprint canvas and select Get.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 551

 Connect the omo node to the Print String's In String connector.

 Compile the Blueprint and close the window.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 552

 Save the level.

 Put the Unreal Engine int game mode.

 In Viz Arc, select saved level and load the level outliner.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 553

 Drag and drop the Blueprint icon from the outliner view into the action canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 554

 Check the Invoke on Execute checkbox and select the triggerFromAcr event from the dropdown.

 Change the omo value to some value and execute the action. The selected number is printed on the render
view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 555

Level Blueprint
A Level Blueprint is always present on any Unreal level map. The Level Blueprint is visualized in the outliner tree
view as the top element under the Level Blueprint folder.

Drag the Blueprint to the action canvas to create a regular Blueprint action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 556

Select a function to be invoked by the Blueprint action and set some of the exposed values.

The same blueprint seen on the Unreal Engine which prints a composes string of the given values from Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 557

Dispatcher

The Dispatcher action lets you create an interaction between Viz Arc and Unreal Engine by setting a value and its
type to trigger from Viz Arc to Unreal Blueprint.

 Enable the Viz Arc plugin (if not already enabled during installation).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 558

 Add Viz Arc Dispatcher BP to an Unreal level.
 On the content browser, make sure that Show Engine Content and Show Plugin Content are checked (click

on the Settings button to open the settings panel).

 Scroll in the folder browser until you find VizArc Content.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 559

 Drag the Viz Arc Dispatcher BP to your level (create actor).
 Subscribe to the dispatcher events (Viz Arc Dispatcher BP events).

 Open or create the Blueprint that is to subscribe to the Viz Arc dispatcher.
 On the event graph, get the Event BeginPlay. This can be done by right-clicking on the canvas,

entering BeginPlay in the search box and double-clicking on Event BeginPlay. This event is
called when Unreal enters play mode.

 Once the Begin Play event has been created, you must extend the execution line. Drag the white shape on
the right side of the Event shown above. Once you release the left cursor button (stop dragging) the All
possible options popup appears.

 Enter Viz Arc Broadcast in the search box to see all the functions of each available subscription type
(void, bool, int, float, string). To subscribe to the Boolean version, double-click on Bind Event to Viz Arc
Broadcast Bool.

Note: To see all Viz Arc Dispatcher BP events, disable Context Sensitive in the popup.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 560

In order for Bind Event to Viz Arc Broadcast Bool to work, you need a reference to the Viz Arc Dispatcher
BP that you created earlier. To do this, create a new variable of the type Object Reference to Viz Arc
Dispatcher BP.

Make it Instance Editable:

 With the variable created we can now attach it to Bind Event to Viz Arc Broadcast Bool, so that Unreal knows
which instance of the dispatcher to listen to. Drag the variable to the blueprint canvas and select Get.
Connect the node to the Target Bind Event to Viz Arc Broadcast Bool.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 561

 The only parameter missing is Event. To create it, drag the red square on Bind Event to Viz Arc Broadcast
Bool inside the canvas.

 Release the left cursor button. Once the popup opens, enter Custom Event and select the only available
option Add Custom Event.... This creates the event that is called whenever the dispatcher fires an event of
type bool . The bool value and event trigger can be used elsewhere in the Blueprint, in this sample just
print the bool value on the render output.

 The last step is to set the Viz Arc Dispatcher Reference. To do this, go back to the editor, select the
Blueprint that you were setting up, loop on the details tab for your newly created variable and select the
one you want to listen to from the list of Viz Arc Dispatchers.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 562

Select the Viz Arc Dispatcher.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 563

 You are now ready to control the variable from Viz Arc.
 Load a level containing Viz Arc Dispatcher.
 Create a Viz Arc Dispatcher Action by dragging the cursor from its icon onto the canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 564

 Click the newly created action’s edit button. You can use the drop-down to select which type of event
you want to fire (void, int, float, bool, string). Whenever the type changes, the view changes
correspondingly so that you can define the value that is sent with the event

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 565

6.8.8 Timecode from Plura or NDI
Timecode can be ingested to Viz Arc in two ways. Either through a Plura PCI board, or through a NDI Stream
containing Timecode metadata.

Specific timecode can be used to trigger actions, on templates they can execute or continue a template graphics.

 Configuration
 Adding Actions to a Timecode

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 566

 Using the Action Editor
 DataMap

Configuration

 On the Configuration window, select the TRIGGER configuration page.

 Under the Time Code section, set the Status to Enabled.

Select which Type of timecode is going to be used. Use an AV Card if the system has a Plura timecode reader
card installed, and a valid signal carrying a Timecode. If multiple cards are installed in the system, select the
device from the Device list. The dropdown only shows the available boards in the system.

 Select the Source where the timecode is embedded within the connected signal.

Choose between one of MIXED, LTC, VITC, ATCLTC or ATCVITC.
 If NDI is selected, select source carrying the Timecode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 567

 Once a valid Timecode is read, it is displayed and updated under Current Timecode

, as well as in the bottom status bar .

Adding Actions to a Timecode
There are different ways to associate a Timecode to the execution of an action. One is on the action editor, and the
other on the configuration panel.

Using the Configuration Panel

Click the ADD button to choose among one of the actions present in the project. The action is added with the
current Timecode.

The action is added to the trigger list with the new Timecode.

The execution type is Execute by default. It can be set to Continue and used for template actions, in which case,
the continue animation is triggered.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 568

The timecode can be modified manually afterwards, the format is HH:MM:SS:FF. FF represents frames or fields,
and it can be between 0 and 24, or in other cases, between 0 and 59 representing field or frames of a 60Hz stream.

Using the Action Editor

 Edit the action and click on the Time Code Trigger button to open the Timecode editor.

 Press the + button to add a trigger using the current Timecode.

The Timecode is inserted in an ordered list.
 A countdown on the execution buttons shows the time remaining until the respective action is triggered.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 569

 If the Toast Notifications are enabled, a notification is shown on the bottom right, showing that an action
was triggered by Timecode.

 The trigger mechanism can be disabled by clicking the timecode icon on the profiles bar, changing to yellow

when disabled .

DataMap
The current timecode is stored as a TIMECODE key in the DataMap, and can thus be used in templates if necessary.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 570

6.9 Engine Status Widget
The engine status widget shows you the status of the profile's Viz Engines, including information about the
currently loaded scene of an engine, what the engine is currently loading, and clip status.

6.9.1 To Add an Engine Status Widget
Go to the main script (or any template script), right click on the UI editor and select Widgets > Engine Status:

Resize and position the widget. Start the script and select a Channel in the drop down menu:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 571

The widget displays a list of Viz Engines for the selected Channel:

1. Engine Status: Shows the Viz Engine Address and Port and the status (green = On Air, orange Off Air, red =
not connected).

2. Load Status: Shows the last loaded element on the engine. A at the beginning indicates that a scene has

finished loading on the engine, while it's loading it shows a spinning circle .
3. Layer Status: Shows what's currently loaded on the three principal layers.
4. Clip Status: Shows a list currently active clip channels of Viz Engine and it's respective playback status

including total time, current position and time to the end of the clip.

In addition to the Channel dropdown menu, you can also use the toggle buttons to hide or show Load Status,
Layer Status or Clip Status.

Note: To function properly, an appropriate Network Adapter must be configured Vizrt Systems config
section. This network adapter must be be visible to the remote Viz Engines:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 572

6.10 Graphic Hub Browser
This section guides you through the functionalities of the Graphic Hub Browser, a web-based tool integrated in Viz
Arc that allows you to browse for assets and media in the Graphic Hub.

This new, web-based, tool replaces the previous Browser in the endeavor of resolving performances issues and
adding new features.

The Graphic Hub Browser shows Folders and Assets by querying the Viz GH REST specified in the Vizrt Systems
Configuration section of Viz Arc settings.

Info: You can go back to the previous version of the Graphic Hub Browser by switching off the button
Enable Graphic Hub's web browser under the General section of the Settings.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 573

6.10.1 Main Features

 Projects and Folders Tree
 Folder's Content / Assets
 Assets Type
 View Mode / Sorting
 Search
 Bookmarks
 Text Filtering
 Import Images into the Graphic Hub

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 574

Projects and Folders Tree
The left panel illustrates the Projects and Folders structure of the Graphic Hub. Click on a folder's name to see its

content. You can explore the subfolders by clicking on the arrow icon or by double-clicking on the folder's
name.

Folder's Content / Assets
Once a folder is selected, the content is displayed according to the Asset Type selected. Once you've found your
asset, you can select it by double clicking.

Assets Type
Here, you can switch between various Assets Type defined by the Graphic Hub, each one represented by a tab. You
can only browse one kind of assets at a time. The available types are shown according to the Asset you are looking
for. For example, if you are looking for an image, solely the IMAGE tab is available.

View Mode / Sorting
Here you can choose the display options of the folder's content.

Clicking on the view-mode button you can choose how the Assets are displayed.

Clicking on the sort button you can choose how the Assets are sorted.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 575

Search
Here you can search for Assets in the Graphic Hub. Click the magnifier icon, and a text field expands and shows you
the search widget.

In the text field marked with 1 you can type the filename (or part of it) of the file(s) that you are looking for. When
you press enter or leave the text field, the query starts and the search results are shown.

By default, the search is made Graphic Hub wide, meaning the GH REST looks for the files with the specified
filename in every Project of Folder, regardless of where they are located in Graphic Hub.

Info: Like the Folder's content, also the search results can be displayed and sorted according to the user
preference.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 576

You can restrict the search to the current folder and subfolders by clicking on the folder icon marked 2. When
this switch is enabled, you can select any folder on the Projects and Folders tree and the search is restricted to the
newly selected folder and subfolders.

You can close the search results by clicking on the double chevron icon marked 3. Whenever you click again on the
search button, the last query result is shown.

Bookmarks
You can bookmark every Folder in the Graphic Hub. Right-click on the desired folder, a context menu shows up,
then click on the Add bookmark option.

You can now open a previously saved bookmark by clicking on the Bookmarks button, and the full list of previously
saved bookmarks is shown.

To delete a bookmark, right-click the bookmarked folder and then click on the Remove bookmark option.

Text Filtering
You can filter all the Assets whose filename contains a desired string by typing any alphanumeric character.

 This works both when navigating the Folders and on the search results.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 577

Import Images into the Graphic Hub

To import an image, it is necessary to select a folder and then drag one or more images from the user file-system to
the right panel. An overlay appears as shown in picture.

Images can only be imported in the IMAGE tab. If there is no IMAGE tab available, it means that the asset
type for the specific media cannot be an image. Please choose another one.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 578

Once the image(s) is dropped it is automatically uploaded.

The accepted extensions are the followings:

 image/jpeg
 image/png
 image/bmp
 image/tiff
 image/gif
 image/tga

If there are one or more conflicts between filenames, a prompt appears asking the user what action you would like
to take.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 579

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 580

6.11 Import and Export
By right-clicking on an empty space in the main area is also possible to import and export.

6.11.1 Import Actions

In Viz Arc, you can import action boxes directly into your active project. There are two ways to import boxes:
internally (From Clipboard) or from an external file (creates a text file containing a .json structure). The boxes are
imported directly into the same tab as they were located if such a tab exists, or imported into your active tab area.

6.11.2 Export Actions

You can export selected action boxes or all boxes in the opened project. You can choose to export boxes internally
(To Clipboard) or to an external file (creates a text file containing a .json structure).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 581

6.12 Multizone Chroma Keying
Use multizone chroma keying to define multiple chroma keying areas (or fullscreen) with different keying settings.
Typical use-cases are areas with different colors or shades, such as horse racing tracks that have multiple shades of
green. Multizone keying allows you to define specific zones of your tracked area where a specific key should be
applied.

6.12.1 Configuring the Multizone Chroma Keyer
In order to make the multizone keying action work from Viz Arc you'll need to set-up a couple of things beforehand.
The way the Multizone Chroma Keyer works in Viz Engine requires the Keyer to run in the back layer and the video
input to be configured properly in mzone keying. Viz Arc ships with a template-based scene that you need to import
into your Graphic Hub.

1. Locate the archive in the Viz Arc program-data folder (typically C:\ProgramData\vizrt\VizArc\) under
Resources\MZChroma\VizArcTools.via. The via file contains a scene named bg_chroma.

2. Import the bg_chroma scene into your Graphic Hub:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 582

Since the scene is stored in the back layer of Viz Engine and all multizone controls are located there, you'll
also need to configure a dedicated channel for the back layer in Viz Arc:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 583

3. Add a channel to your Engine, uncheck the MAIN layer and check the BACK layer only. Give the channel a
meaningful name like "back". The other channel (in this case main) is used for the actual AR/VR graphics,
where only the MAIN layer is checked (default).

4. The next step is to create a scene loader by right clicking the action canvas and selecting Create Viz Scene
Loader . This loads the recently imported scene into the back layer. You can also load your main scene as in
the same loader.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 584

5. Once the background chroma scene has been loaded into the Viz Engine and a valid video signal has been
connected, you can start adding a multizone chroma action to the Viz Arc action canvas. To do so, right click
on the action canvas and select Create Multizone Chroma Key .

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 585

Once the action has been created you can fill in a name for a new full screen multizone, for example
fsGreen .

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 586

Make sure the action's channel is set to your back channel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 587

You can now start using the picker on your output directly or you can adjust the key manually. For picking,
it's recommended to use the Window mode to make sure the window remains open after picking. Hold
down CTRL and click on the preview output. In order to see the actual key on the output, press the SHOW
KEY toggle.

Once you have adjusted the key, you can test it with an element in your main scene. To do this, create a Key
Action by dragging the key plugin to the action canvas. In the keying action enable Combine with BG
Chroma Key.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 588

You'll now see the respective Viz object keyed on the green areas in the output.

You can now add more Multizone Chroma Actions to key more colors, for example a key for the color brown.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 589

To make On Air operation more efficient, you can use the dedicated CHROMA view for quick operation. This
button appears as soon as a multizone chroma action is present.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 590

Click at the top to ADD or REMOVE specific Multizone Actions to this view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 591

Once you have added all relevant keys for your show, you can easily navigate through the keys using the
arrow keys on your keyboard. You can directly pick in the video window where you can also adjust the
picking size with the mouse wheel.

In Pick Source , you can select the signal that is to be shown when the chroma key is selected. Both DirectShow
sources and local engine output are supported. This is particularly useful for multi-camera set ups.

You can also specify what is to be evaluated during picking.

 Check Luma if you just want to pick the luminance (for example, if you want to react only to changes in
brightness shading).

 Check Chroma if you want to pick the color too.
 Or check both if you want to change both of them.

The keying values are sent to the engines directly as long Update On-Edit is enabled.

You can pick by clicking the left cursor button on the output window. The size of the picking area can be adjusted
with the mouse wheel. The space bar freezes or unfreezes the output window.

6.12.2 Working with Polygons and the Map
If you want to restrict your key to a certain area or shape, you can use polygon shapes that can be defined in the
map view. Go to MAP, right click and select Polygon...

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 592

Click on the map for each vertex and finish the drawing by pressing the ESC key. You'll see a multizone chroma
control on the right hand side. If you now click on Create MZ Chroma Action, a corresponding action is inserted on
the action canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 593

Viz Arc creates a polygon in the background scene that is tracked with the tracked camera. The area that is keyed on
remains fixed in the same place. Note that the polygon is flat and a flat floor is therefore assumed.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 594

6.12.3 Multizone Chroma Key Action in Detail

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 595

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 596

Alpha of key signal, 100 is full opacity, 0 is completely transparent.

U value for color keying.

V value for color keying.

All colors between the reference UV and this diameter are removed.

Gradient for fade out at diameter border (0=sharp, 1=soft).

Luminance is defined as 0.0 for dark and 1.0 for bright.

Lower luminance limit for keyed colors.

Gradient for lower luminance limit (0=sharp, 1=soft).

Upper luminance limit for keyed colors.

Gradient for upper luminance limit (0=sharp, 1=soft).

Note: Lum Min and Lum Max are not absolute values, but are relative to the Luminance (e.g. when
Luminance is 0.5, Lum Min is 0.1 and Lum Max is 0.2, the Keyer works in the range 0.4 to 0.7).

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 597

6.13 OCR
The OCR (Optical Character Recognition) widget enables to recognize any characters or numbers from a video
source and store them in the DataMap.

 To Add an OCR Widget
 Sources
 Warp
 Global Settings
 ROI (Region Of Interest)

 Add a New ROI OCR
 Properties
 ROI Settings
 Example
 Templates and DataMap

 Tracking

6.13.1 To Add an OCR Widget
Go to the main script (or any template script), right click on the UI editor and select Widgets > OCR.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 598

Resize and position the widget. Start the script.

You can add multiple widgets.

Sources
Select a Source in the drop down menu. The widget supports two types of sources:

 SMURF: Read from a shared data stream identified by given key. This needs both the key and the sync key to
work.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 599

 NDI: Each NDI stream found is listed in the drop down.

Warp
Herdly the camera is not perpendicular to the target (ex. scoreboard), so the image needs to be warped. This step
helps the OCR algorithm and improves the results.

Wrap the quad around the target grabbing the red circles.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 600

Zoom the image with the mouse wheel, helping to wrap the target more precisely.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 601

The OCR algorithm works with black and white images; to see the actual image used, you can click on the Show Key
button next to the Warped expander.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 602

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 603

Global Settings

 Invert BW: The OCR algorithm works best with black chars on white background, if the result of binarization
is inverted you can click on this checkbox to fix it.

 Equalize Histogram: Enhances the contrast and helps to be less sensible to light changes.
 Global Threshold multiplier: If there is a light change that leads the algorithm to mixed results, it is

possible to use this slider to change all the threshold values of the OCR Rois.
 Shared Memory prefix: This string is prepend to the OCR Roi name and the result is used as a key in the

share memory datamap.
 Whitelists: It is possible to suggest the allowed chars to improve the results, it doesn't support regular

expressions but has some keywords:
 [a-z] all lowercase letters.
 [A-Z] all uppercase letters.
 [0-9] all digits.
 [a-zA-Z] all letters.
 [a-zA-Z0-9] all letters and digits.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 604

ROI (Region Of Interest)

Add a New ROI OCR

 Click and drag the left mouse button in the Warped View to begin drawing the rectangle from its first corner.
 While holding the left mouse button, drag to the required size.
 Releasing the left mouse button.

It is possible to adjust the size of the ROI by grabbing the top left corner or the bottom right.

Properties

 ID: The ID is used as part of the DataMap key if the name field is empty.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 605

 Name: Second part of the DataMap key (the first is the prefix see Config paragraph above).
 Value: Result of the OCR algorithm that is sent to the DataMap.
 Settings Button: See below.
 Remove Button: To remove the ROI.

ROI Settings

 Type:
 Simple: Normal OCR algorithms.
 Dots: Count the dots in the ROI.

 Language: Language selection to improve the results (even better if used in conjunction with the whitelist)
 Binary threshold: The OCR algorithm works on black and white images, therefore a threshold must be

applied. In the Warped option, if you click on the ShowKey button you'll see a grayscale image where the
pixel value range is between 0 and 255, so every pixel below the threshold is white or black if above.

 Erode: The bright areas of the image get thinner, whereas the dark zones gets bigger.
 Dilate: The dark areas of the image get thinner, whereas the bright zones gets bigger.

Example
This is how a fully configured widget appears.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 606

This is the relative DataMap:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 607

Templates and DataMap
Thanks to the DataMap it is possible to link the results of the OCR to any template object as show below:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 608

This an example on how to link a template object to an ROI result:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 609

Tracking
When the tracking is enabled, the algorithm tries to follow the target. Even if the camera moves, it continues to
operate without the intervention of the user.

The quad changes color to confirm the tracking has started. While tracking is not possible to move/grab the control
corners.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 610

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 611

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 612

6.14 On Air Mode
On Air mode lets you operate all the prepared actions in Builder Mode (ACTION, SET, SCRIPT and PLAYLISTS). Go On
Air by clicking on the selected action (applies all single actions; the execute button is available on actions groups).

The running Script Form and Playlist section is displayed on the right side of the panel.

6.14.1 To Go On Air
This section shows how to operate in On Air mode:

Once you are ready to go on air, CLEAN UP all Viz Engines
connected to the selected profile.

After cleanup, click the INITIALIZE button to load the scenes you
have imported into the project.

Once the scene is ready, you can easily use all the actions you
have prepared in Builder mode.

You can mark an action as a favorite during operation in order
have it readily available.

Find an action quickly be entering it in the search bar.

Use the 1-Click Action button to select whether you want
actions to have direct On Air buttons or an execute button for
each action, by adding an execute button in each action box.

Use the 1-Click Group button to select whether you want group
actions to have direct On Air buttons or an execute button for
each action, by adding an execute button in each action box.

Note: It's not possible to modify any aspect of the actions, all modifications have to be done in Builder
Mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 613

6.14.2 On Air Mode Desktop Shortcut and Command Line Switches

After installation, a desktop shortcut is created that's used to launch Viz Arc directly in On Air Mode, without the
possibility of entering Builder Mode. You can use additional command line options for startup.

6.14.3 Builder-only Tabs

In Builder Mode you can right click on an action tab and select Is Builder-only. A small icon shows that the tab is
Builder-only, the entire tab does not appear in On Air Mode. This prevents users from inadvertently executing
actions that should not used during On Air operations.

Note: Users can switch and save as projects in On Air Mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 614

6.15 Playlist
You can add individual actions in a rundown and play the rundown either manually or automatically by defining
timing on single playlist elements.

The Playlist is at the top right of the UI in both Builder and On-Air mode.

6.15.1 Adding Actions to the Playlist
To add actions to the playlist, drag and drop an action from the action canvas into the playlist while holding in the
SHIFT key.

6.15.2 Working with the Playlist
Right-click on the playlist to make the context menu appear.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 615

 Execute Action: Executes the currently selected action.
 Highlight Action: Highlights and brings into view the action on the action canvas.
 Rename Action: Renames the selected action.
 Create Group: Creates a logical group above the selected row.
 Delete Rows: Deletes the selected rows.

When opening the context menu on a group and selecting Execute, all child items are executed in order.

Use drag and drop to move actions around the playlist. The indicator shows if the action will be inserted before,
after or into a group.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 616

The orange triangle shows where the dragged item is dropped when released.

 Drop inside a group: When dragging over a group item, the cursor icon shows whether the item is going to
be dropped inside the group.

 Drop under or above the group: Moving the cursor further to the left allows you to drop under or above the
group.

 Add a new playlist: Right click on an empty space in the playlist tab area.
 Rename or delete a tab: Right-click on an existing tab.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 617

6.15.3 Using the Playlist
A selected playlist element can be executed using the Execute Action shortcut (default F5) or by double clicking the
element. A separate system shortcut (default ENTER key) may be used to execute the current element and advance
to the next element in the playlist. A green triangle shows the element that was executed most recently.

For template action items, the shortcuts for continue, update, out and preview work as well.

The buttons play and continue can be used directly on template items to trigger Execute and Continue
respectively.

Duration and Loops

The very last column on a playlist element contains a duration (default 5.0) representing the time in seconds that
the playlist waits before executing the next element. The default duration can be changed under Playlist in General
Settings.

Use the panel at the bottom to play the playlist:

 Play: Starts the playlist from the top and stop interrupts playout.
 Loop: Loops the playlist indefinitely when checked.
 Duration: Indicates the duration of one single run.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 618

 Auto Preview: Executes any selected playlist item on the preview channel, when checked.

Groups can also be checked for looping. The elements within the group are then executed indefinitely until the stop
button is pressed.

Information: When the playlist has been scheduled for automatic playout, all modifications made on the
playlist are ignored for the playout. The playlist must be stopped and played again in order to reflect any
changes.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 619

6.16 Preview Studio
 Recording
 Playback
 Limitations

6.16.1 Recording
To start a recording, select the previously created profile from the bottom-left corner of Viz Arc.

Select the PREVIEW STUDIO tab on the right sidebar.

In the Studio Preview UI, the status of the remote Engine Services and their status can be seen. For each Engine
Service instance, the status on the remote machine and the available disk space, is shown. When the icon is yellow,
the Engine Service is available and idle, when grey, it is not reachable, installed or running.

It is possible to switch between the different channels of the Profile, if more then one is available.

By hovering on an Engine Service instance the edit button appears .

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 620

By clicking on it, the Smurf Key and Sync Key can be modified. The keys indicate the input source from which the
Engine service should record the video stream of the engine. The default values are set to grab the video from the
live input 1 of the Viz Engine.

If the keys are correctly configured, enter a filename for the new recording and press REC. Make sure there is a valid
scene loaded with a live input in texture mode, and configured with SHM Aux Mode as Send. Also make sure the
preview engine is configured to receive and interpret the embedded tracking data of the incoming NDI stream.

Once the recording has started, the icon(s) of the Engine Service(s) turn green and the available disk space updates
accordingly.

During the recording, it is not possible to switch to the Playback tab.

6.16.2 Playback
During the Playback, each remote instance of the Engine Service creates an NDI stream that carries both the video
and the tracking data. This stream can be set as a Video Input into the Viz Engine that is going to act as Preview
Server.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 621

To start a Playback, click on the Playback tab and select the desired recording from the dropdown list. Each
instance of the Engine Service can stream a different recording. It is also possible to choose which engine is used as
the Preview from the Preview Engine dropdown list.

If Loop checkbox is ticked, once the playback is over, it starts back from the beginning.

By clicking on the Play button, the NDI streams are created and set as the input source of the specified Preview
Engine. A slider shows the current position of the clip and can be used to seek to a certain position. The play/pause
button can be used to stop and resume the player. The Data Offset parameter represents a offset (in fields),
between camera tracking data and video during playback towards the preview engine.

An artist can now work on the preview engine in Artist mode using the same scene that is used during recording, or
any other scene where he can fine tune and test graphics without having to rely on a fully started and set-up studio
environment.

Change colors, adjust geometry that causes z-fighting, or test a completely different graphics:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 622

6.16.3 Limitations
Once the tracking is recorded, it cannot be modified (for example, it is not possible to add a pan offset or change
lens distortion parameters of the recorded tracking).

Using the playback feature might impact the performance of the engines playing out the NDI stream. It is not
recommended to use this feature while the Viz Engines are on-air during a live production.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 623

6.17 Preview
This pane displays the Viz Engine output or any other video source configured. By enabling Update On-Edit, it is
possible to see project changes in real-time.

Use the three icons at the top left of the preview panel to select a visualization mode for the preview.

1. : Shows Fill. Only shows the fill channel.

2. : Shows Key. Only shows the key channel.

3. : Shows Keyed. Only shows the keyed output.

A drop down menu on the right side of the output mode buttons, can be used to quickly change the source of the
output among the available outputs.

Note: Currently only NDI sources and the Viz Output through shared memory (starting form Viz Engine 4.x)
are capable of carrying fill and key information. This feature only works on NDI and Viz Engine sources.
Select Show Fill for any other sources.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 624

Click the Detach button to pop out the preview window to a separate window. Close the window again to attach it
back into the main window.

Use the top bar context menu to add additional useful overlays.

 Restart Output: Restarts the stream decoding process.
 Stop Output: Stops the output, might be used to save CPU/GPU resources.
 Display Fps: Displays the effective frames per second of the actual display in Viz Arc as a red number on the

bottom left corner.
 Display Perf. Info: Shows the bottom performance bar when connected to a Viz Engine.
 Display CSC: Displays the center cross when connected to a Viz Engine.
 Show Commands: Shows commands when connected to a Viz Engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 625

6.18 Precision Keyer
 Simple
 Advanced
 Color Correction
 Picking
 Settings
 Presets
 Execution
 Web View

The Precision Keyer can be controlled as usual through the standard UI. Additionally, there are other options to
control when creating Precision Keyer actions.

Once at least one Precision Keyer Action has been created on the action canvas, the left hand tool bar displays
a KEYER button which holds a dedicated UI for Keyer actions.

A list of all Precision Keyer actions is displayed on the top bar, click on on of them to work on it.

6.18.1 Simple
The Simple view displays only the most important settings that might be changed during On Air operations.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 626

6.18.2 Advanced
The Advanced view displays all values of the Precision Keyer.

6.18.3 Color Correction
The Color Correction view displays the the color correction values with additional sliders.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 627

6.18.4 Picking
The Picking view shows the values relevant for the backdrop color and the hue value.

Use the Pick button to pick any color on the UI. Use the mouse wheel to increase or decrease the picking area.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 628

Use the Auto Adjust button to let the Viz Engine automatically determine an optimal backing color and hue.

Press the Fetch button to get the current value from the connected Viz Engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 629

6.18.5 Settings
The Settings view shows the basic settings of the Precision Keyer.

 Screen Color: Whether to key on a green or bleu screen or whether the keying should take place externally.
 Key in Unreal Engine: Whether the keying process should be calculated in the Unreal Engine or the Viz

Engine.
 Video Input: The video source within the Viz Engine where the keying should take place.

6.18.6 Presets
The presets can be recalled, stored, deleted and created like in the classic User Interface. The presets are available
in the Simple, Advanced and Color Correction views.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 630

6.18.7 Execution
The entire chroma actions can be explicitly executed using the Execute button on the bottom left part of the view.

6.18.8 Web View
The entire UI can be visualized in an external web browser. Top open it with the default browser go to View > Web
Views > Precision Keyer.

Note: Selecting the action does not execute the action on Viz Engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 631

Or enter the URL http://localhost:5004/arc-web/Precision-Keyer/ into a web browser. Replace localhost with your
hostname to reach the page from an external machine.

http://localhost:5004/arc-web/Precision-Keyer/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 632

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 633

6.19 Program and Preview
If a preview channel is configured in the active profile, you can execute any action on the preview channel:

 Previewing by Keyboard Shortcut
 Previewing by CTRL Modifier

A sample profile configuration defining a program and preview channel

6.19.1 Previewing by Keyboard Shortcut
Select one or multiple actions and use the keyboard shortcut defined in the Shortcut section (default F9).

6.19.2 Previewing by CTRL Modifier
Press and hold the CTRL key and execute an action by clicking the Execute button. The action is executed on the
preview channel instead of the channel defined in the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 634

Either press F9 or press and hold CTRL and left click the Execute button to execute the action on the preview
channel.

6.19.3 Templates
In case of a template action, the CTRL modifier is extended to the entire command header:

When holding the CTRL key and hitting any of the header buttons, the respective commands are sent to the preview
channel.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 635

6.20 Projects
In Viz Arc, projects consist of two main elements:

 Scenes: The Viz Scene or Scenes the project controls.
 Actions: Buttons that control different parameters of any Viz Scene within a project when activated.

Optionally, a Project may also include:

 Custom Script: For more dedicated logic and controls.
 Virtual Studio or Augmented Reality objects configuration.

Projects can be managed (Open, Create, Save, etc.) from the Main menu or Project toolbar.

Note: All projects are stored in the Projects folder, see Files and Folders.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 636

6.21 Templates
 Creating a New Template

 AI Prompt
 AI MCP Server and External Tools
 Table Sample

 Using a Template
 Global Template Properties
 Template Controls

 Adding Templates to a Master Scene
 Using SubScenes

 Using Templates on a Scene Containing Multiple Top Level Control Objects
 Unreal Templates

 Creating a New Unreal Template
 Unreal-specific Features
 Using a Template

 Flowics
 Preparing Flowics Graphics for Use in Viz Arc
 Creating a New Flowics Template
 Global Data Provider - Custom Data
 The Logic of Execute and Update
 Executing Custom Commands

 DataMap Explorer

Viz Arc lets you create custom templates for both Viz Engine scenes and Unreal Engine levels. The templates are
fully customizable and a script can be used for even more flexibility, including data integration and custom logic.

6.21.1 Creating a New Template
 Under the Tools section, select DESIGN.

Note: Before creating a new template, you must ensure that Graphic Hub has the required Add-Ons to
store the templates, see Configuring Graphic Hub.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 637

 Next, click Create New Template.

A browser window appears where you can select either a Viz or an Unreal scene:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 638

 Click Next to view Control Objects found within the scene. Select the Control Objects for which a default UI
is to be created:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 639

 Click Finish. A default UI based on the selected Control Objects has now been created:

The left hand side contains a list of the Control Objects' ID's along with their description. A green link icon indicates
whether the Control Object is linked to a UI element.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 640

A property panel on the right shows editable properties of the selected UI element, or, in case of multi-selection, the
properties that are common to the selection. A sample of a text parameter property:

 ID: The unique internal ID of the parameter that can be used in the script code to reference the parameter.
 Label: The label of the parameter.
 ToolTip: An optional ToolTip.
 Font Size: The size of the font used in the textual parts of the component.
 Font Family: The font used in the textual parts of the component.
 Border Thickness: The border thickness of the parameter.
 Color: The background color of the parameter.
 Position X: The horizontal pixel position of the upper left corner of the parameter.
 Position Y: The vertical pixel position of the upper left corner of the parameter.
 Width: The width of the parameter.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 641

 Height: The height of the parameter.
 Z Index: The z sort index of the parameter. In case of overlap with other parameters this value can

determine whether the parameter is in front or behind the overlapping component.
 Enabled: Whether the parameter is usable for user interaction.
 Visible: Whether the parameter is visible to the user.
 Tab Stop: The order of the tab-stop.
 Linked Object: In case the parameter is linked to a ControlObject ID or a Blueprint variable.
 Linked Data Key: The name of the DataMap key (see DataMap Linking).
 Linked Data Query: The query for the DataMap value (see DataMap Linking). Can be empty for simple data

mapping.
 Value: The actual value of the parameter.

AI Prompt
Viz Arc includes an integrated AI Assistant within the Template Editor, designed to help developers with template
creation, code generation, and troubleshooting. This module leverages large language models (LLMs) to provide
contextual assistance directly within your development workflow. As an example, you can use the AI Prompt for
simple tasks like ‘format the text field txtLeft with single digit fraction’, or ‘color the UI in soft colors’.

In order to use the internal prompt, make sure an API Key is in place.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 642

The prompt shows you the modifications the AI suggests. You can Accept or Reject the changes.

After applying both changes your template might look like this (changed colors and single digit fix):

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 643

AI MCP Server and External Tools
As an alternative to the internal AI prompt, you can use Viz Arc’s MCP server. The advantages of using applications
like Claude Desktop are applications can access external API documentation, might be able to access local files and
maintain a rich conversation context. These applications can reference previous work and they remember you
project structure and preferences. Billing may also be a factor favoring the MCP approach. In this section we use
Claude Desktop as a reference, but any other tool might be used as well.

Once configured you can for example open a template in the Template Editor and ask: “have a look at the current
Viz Arc template.”

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 644

You should get a reply about the code, the UI elements and what the template is actually doing. Afterwards you can
modify the templates logic and/or appearance.

For example, type

Instead of Boulder's election, use San Antonio (Texas) mayoral election results

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 645

AI thinks about it. Once it’s done we might want to change the UI’s appearance by prompting

Color the UI in a Texan theme

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 646

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 647

The results might not be perfect and you might need to correct the AI, for example:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 648

Afterwards, the template might look like this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 649

Table Sample
As another sample, let’s assume we created a Viz Engine template from a Table scene containing graphics able to
visualize a soccer standings table. The table is organized using ControlList plug-ins on the Viz Engine Scene. The
default template generated from the wizard might look like this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 650

Now let’s use Claude Desktop to connect the table to the European soccer leagues using a public API.

First prompt:

Have a look at the current Viz Arc template. It's a table. Try to add logic that fetches the current standings of the
premier league from an open source API.

After the first iteration it might look like this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 651

Second prompt:

Add a field to enter an API key and a dropdown with all available leagues
The second iteration looks like this and is already functional.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 652

Third prompt:

Rearrange the UI and add some colors

Now let’s fix the logo:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 653

Use a URL from the API for the respective competition logos

The logo now appears. You can go on and add more complexity or fix things manually. Every time the AI modifies
the template, make sure to stop and start it again such that script changes take effect.

After a couple of manual adjustments, the template can be finally used and tested with VizEngine’s output.

6.21.2 Using a Template
Templates are available in the action panel.

AI-Generated Content: Content produced by AI features requires human review before use. Vizrt provides
AI integration "as is" without warranty. You are responsible for validating, testing, and ensuring AI-
generated content is fit for your purpose. Vizrt accepts no liability for any damages resulting from AI-
generated content.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 654

The list of templates can be refreshed by right-clicking on the template list canvas and selecting Refresh from the
context menu.

To create an instance of a template, drag and drop it to the action canvas.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 655

For Viz Engine based templates, you can control to a certain extent the behavior of what happens on Execute and
Continue. When executing the template, it loads the specified scene (by default the scene on which the template
was based on). The scene is only loaded when the Load Scene check box is checked.

The Exec Dir is the name of the directory to be triggered on execute. Use <STAGE> to animate the entire stage. By
default START is used to start the animation, but it can be changed to anything else available in the drop down list
or a custom string (for example, CONTINUE or as a customized string to animate between two keyframes you cut,
like GOTO $stopA $stopB). The same logic applies to the Cont Dir text input and the respective Action text field for
when the template’s Continue is triggered.

The template action can be opened in the same way as all other actions in a popup window. It can detached as a
window that always stays on top, or embedded into the action canvas using the Embed or Window buttons

.

Template action as an embedded window is shown above. The embedded window can be resized by percentage or
by using the resize grip in the bottom right corner of the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 656

Template action as a detached window is shown above.

When Auto Zoom is enabled, you can zoom in and out of each template action using the shortcuts CTRL + to
increase size, CTRL - to reduce size, and CTRL + 0 to restore the original size.

A zoomed out version of a template action window is shown above.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 657

Global Template Properties
When creating or modifying a template and when in the UI editing mode, click on the background canvas to access
a template's global properties:

 Background: Sets a default background color. When dragging the template onto the action canvas, the
action color is the background color.

 Background Image: Lets you choose a background image for the template either from a local file system,
the GH or the Media Service. The snap button grabs the current frame of the editing Engine.

 BG pos X: The horizontal pixel position of the background image.
 BG pos Y: The vertical pixel position of the background image.
 BG Width: The pixel width of the background image.
 BG Height: The pixel height of the background image.
 Command Header: Whether the template displays the default command header (Execute, Continue,

Update, Out).
 Auto Zoom: When enabled, the template UI resizes in window and embedded mode according to the

window size or the embedded space.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 658

 Update When Focused: When enabled, the template receives callbacks only when the template is selected,
has focus, and is opened in either embedded or window mode. Relevant callbacks are: OnTimer,
OnStreamDeckKey, OnDataMapValueChanged. When disabled, the template receives those callbacks when
instantiated on the action canvas in any form (embedded, windowed or closed and without being explicitly
selected).

 Update When Collapsed: When enabled, the template can receive callbacks when the template is collapsed
as action button. Relevant callbacks are: OnTimer, OnStreamDeckKey, OnDataMapValueChanged. When
used in combination with the flag Update When Focused unchecked, the template always receives the
relevant callbacks, when not selected and collapsed to a standard action button.

 Execute on Initialize: Executes the template when the global Initialize button is triggered.
 Update on Initialize: Updates the template when the global initialize button is triggered.
 Director On Execute: This dropdown menu contains the list of directors of the scene. Select a director that

should be triggered when executing the template. By default the entire Stage is animated when <STAGE> is
selected.

 Execute Action: The type of director command to call when executing the template. By default it is START
but can be changed by either selecting from the predefined dropdown values o by entering a specific
command.

 Director On Continue: This dropdown menu contains the list of directors of the scene. Select a director that
should be triggered when continuing the template. By default the entire Stage is animated when <STAGE> is
selected.

 Continue Action: The type of director command to call when executing the template. By default it is
CONTINUE but can be changed by either selecting from the predefined dropdown values o by entering a
specific command.

Template Controls

Execute
A template action can be triggered using the Execute button above the template or through the system keyboard
shortcut Execute Selection. When the action is collapsed, the regular Execute button on the action does the
triggering. When executing, the scene that is associated with the template is loaded, the Control Objects are being
updated and the stage is being played. In case an engine of the associated channel has a Concept configured, the
scene in that concept is loaded.

Continue
The Continue button or the Continue Selection keyboard shortcut sends a continue command to the scene stage.
When the action is collapsed, the Execute button executes a Continue when clicked with the right mouse button.

Out
The Out button or the Out Selection keyboard shortcut removes the scene associated to the template from the
renderer, thereby causing a hard out.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 659

Update
The Update button or the Update Selection keyboard shortcut sends the currently set Control Objects to the
renderer and update the values accordingly. This can be useful for updating live data while a scene is on-air.

6.21.3 Adding Templates to a Master Scene
By default, a template action is triggering a stand-alone scene and is thus useful for simple lower third graphics,
tables etc. When editing the template action, it's possible to toggle the destination of the template's action to a
container path of another scene.

The container path can be entered manually or can be obtained from the scene tree by right clicking the desired
container and selecting Copy full path to clipboard.

Info: The system Execute Selection, Continue Selection, Out Selection and Update Selection shortcuts
only work when a single action is selected.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 660

Executing those actions results in the objectified object being loaded into the destination container path and the
respective Control Objects being updated.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 661

Another way to insert template scenes into a master scene is the following:

 Create your template based on a separate scene.
 Insert manually the objectified geometry into you master scene.

 Split the merged geometry.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 662

You'll obtain a container containing your top ControlObject as in the stand-alone scene.
 Locate the director and re-arrange and rename in the Viz Artist stage, if necessary.

 Save the scene and reload it in Viz Arc.

Copy the full path of the container containing the Control Object.
 In the template select Control Object, paste the container path to Control Object and the path to its Director

to Director.
Optionally adapt the Exec Dir and Cont Dir fields with appropriate directors for the sub tree scene.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 663

You'll be able to operate your template with execute/continue, while the scene is embedded in the AR/VR master
scene.

Using SubScenes
In the template action select SubScene in case a SubScene shall be controlled from the template.

The subscene can be located anywhere in the containing scene.

When executing the template in this mode, the scene associated to the template is loaded on the SubScene engine
plugin (in case Load Scene is enabled). The director Exec Dir is executed with the specified Action (START by
default). The director typically takes the name of the container, once the SubScene is loaded, refresh the master
scene in Viz Arc and copy the Director to the action.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 664

After copying the director path to the Exec Dir and Cont Dir input field.

6.21.4 Using Templates on a Scene Containing Multiple Top Level Control
Objects

Within a large AR scene, you might want to create subtrees separating different graphics elements. For example, a
subtree containing a bar chart and another subtree containing a pie chart graphics.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 665

When using this kind of tree structure having Control Objects spread around the scene as sibling nodes, it is
possible to directly create templates for each individual top level Control Object.

While creating a new template by selecting the scene from the Graphic Hub, you'll be able to select either one of the
top level controls. You cannot control multiple top level control objects from within a single template.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 666

Once a Control Object is selected for the template, choose which director should be used when executing the
Execute and Continue buttons of the template. The selection can be found on the template background property
when clicking any empty space on the template canvas. The subscene director has to be built in such a way that
there is a stop point when the graphics are fully animated in and that a continue command animates the graphics
out again.

Once the templates are finished they can be uses as embedded templates on the action canvas. The operator can
trigger the different elements individually.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 667

6.21.5 Unreal Templates

Creating a New Unreal Template
The process of creating an Unreal template is almost the same as that for creating Viz templates, with a few slight
differences.

Creating an Unreal Template

 Go to the DESIGN section.
 Click Create new template to open the wizard.
 Select the Unreal Hub tab and select a level.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 668

Upon selecting a level and clicking Next, the level is set on the configured Unreal editing Engine and all of the
blueprint actors and the level blueprint are parsed and displayed on the following screen (as shown below).

The list displays all the blueprint actors found and a list of their categories and exposed objects. You can then select
which are to be created when finalizing the template creation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 669

Unreal-specific Features

The Unreal template in the screenshot above contains the following Unreal-specific features:

Template Controls
Only Execute and Update are available for Unreal templates.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 670

Unreal Function Integration
On the left side of the parameter canvas, there is a tree-view containing all the existent blueprint actors. Clicking
the Execute or Update button triggers a popup, allowing you to choose whether the template should call a
function and, if so, which one to call (as defined in the Unreal blueprint).

Using a Template
You can access all saved templates on the action panel. Unreal templates can be identified by the UE4 icon that
precedes the template name.

Similar to Viz templates, the edit popup for an Unreal template contains settings for loading the level or project on
execute.

Note: The list of blueprint functions (function drop-down) only displays those functions that have no input
parameters.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 671

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 672

6.21.6 Flowics

Preparing Flowics Graphics for Use in Viz Arc

As a first step, the Flowics graphics package needs to be prepared for being controlled by Viz Arc. The steps are the
same as they are for controlling the graphics Flowics Remote Control or Rundown Control. The fields that need to
be exposed, in this sample the two text lines of the lower third graphics and the image:

Select the graphics element to be exposed.

Enable the Show on Remote Control checkbox and add a Integration ID.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 673

Repeat those steps for all elements that need to be controlled. When done, make sure the modifications are

Published .

Creating a New Flowics Template
Make sure the editing engine in your profile is configured to use the graphics token of your graphics package.

It must match the API Token specified in Flowics:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 674

Next, go to the Viz Arc Design tab and create a new template. Select the Flowics tab an select the overlay to be
used.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 675

Click next and select the Integration ID’s of the overlay to be generated into an initial template UI.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 676

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 677

You can also create new UI parameters and link the Integration ID’s afterwards. The ID's are available the drop
down menu as Linked Object property.

The toggle button responsible to animate the overlay in and out can be customized, the Overlay ID can be specified
as well as the on/off colors and labels.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 678

The overlay can be also controlled by a bool parameter, just enter the Flowics overlay ID in the Overlay ID property.

The image Integration ID’s can be only assigned manually or through scripting.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 679

The asset URL can be copied from the Flowics asset library using the Copy URL button of the asset

A simple script demonstrating how an image URL can be assigned to an asset parameter programmatically.

A WebView parameter can be added with the respective output of the Flowics output.

Note: The Flowics Asset library cannot be browsed from Viz Arc at the moment. Please also note that
assets from the Graphic Hub or the local file system will not work. The assets need to come from the library
or any other public http endpoint.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 680

Execution and Update Logic
When a Flowics template gets executed through the Execute button or through shortcuts, the Integration ID’s
mapped in the template UI and the toggles mapped in the UI are updated on the Flowics output.

When the template gets updated through the Update button or its respective shortcut, only the Integration ID’s are
updated on the Flowics output.

Data can be updated selectively using the UdpateTemplate scrpting method. When the function is called without
parameters, all Integration ID’s mapped in the template UI are updated on the output. When a space separated list
of Integration ID’s is used, only those ID’s are updated on the output.

Extending the sample above, the output is updated as soon as the text is validated on the template UI (though lost
focus or when ENTER is pressed in the text parameter).

Global.OnParameterChanged = function (id)
{
 if(id == "imgURL")
 {
 // assign URL from text parameter
 // to flowics image
 img.Value = imgURL.Value
 }
 else if(id == "text_2nd" || id == "text_1st")
 {

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 681

 // text_2nd and text_1st are the internal Viz Arc script id's of the text
parameter's
 // linked to the Floics Integrtion ID's n2329.bottomline and n2329.topline
 // only update the 1st and 2nd row text
 UpdateTemplate("n2329.bottomline n2329.topline")
 }
}

Global Data Provider - Custom Data
The Global Data Provider in Flowics is a powerful tool to control graphic settings throughout the GFX package. A
setting (for example, a text string or a color) can be linked multiple times throughout one or multiple overlays.

In particular the Custom Data provider can be used to expose controls to Viz Arc templates.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 682

The respective control needs to have an Integration ID assigned to be exposed to Viz Arc. Currently only Text, Image
and Color properties are supported.

Create a new template and select the Overlay(s)

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 683

In the next step of the template wizard the Global Data Providers show up where the single elements can be
selected/deselected for automatic UI generation.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 684

The UI generated might then look like this:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 685

The Logic of Execute and Update
Once the template is finished it is ready to be used.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 686

When a template is Executed all the linked data in the template is updated on the Flowics graphics and all the
toggle buttons present in the template are going to be matched in the graphics. Overlays are animated in or out
according to their status in the template UI.

When a template is just Updated, only the linked data items are updated on the Flowics graphics.

Make sure the templates are linked to the correct output channel/Engine matching the correct Flowics API token.

Executing Custom Commands
It is possible to send custom commands to Flowics engines. They need to be wrapped in a JSON structure, as shown
below, and sent to the engine as a stringified JSON.

{
 "command" : string,
 "method" : string,
 "postfix" : string,
 "content" : string,
 "doArrayWrap" : bool
}

 command: Needs to be “custom”.
 method: Can be PATCH, GET, PUT, POST, DELETE.
 postfix: The postfix to be added to the URL.
 content: The JSON content to be sent as a payload to Flowics.
 doWrap: Use true to wrap the content into JSON array brackets ‘[' and ']’.

The clock as it appears in the Flowics remote control:

Info: The Flowics API documentation can be found here.

https://postman.flowics.com/

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 687

The following example shows a convenience function for a Viz Arc JavaScript, that sets and starts a soccer clock (for
example, it can be triggered when a match starts at 00:00 or the second half at 45:00).

function SetClockAndPlay(clockVal)
{
 var flowicsCommand = new Object()
 flowicsCommand.command = 'custom'
 flowicsCommand.method = 'PATCH'
 flowicsCommand.postfix = '/control/global-data-providers'
 flowicsCommand.content = "{\"id\":\"n1818\",\"controls\":{\"stopwatch\":
{\"value\":{\"startFrom\":\"" + clockVal +"\",\"timeReference\":\"" + Date.now() +
"\",\"current\":\"" + clockVal + "\",\"state\":\"play\"}}}}"
 flowicsCommand.doArrayWrap = true

 GetSelectedChannel().SendSingleCmd(JSON.stringify(flowicsCommand))

 Console.WriteLine("SetClockAndPlay " + flowicsCommand.content)
}

The function above can be invoked as:

SetClockPlay("00:45:00")

The content as a JSON:

{
 "id":"n1818",
 "controls":{
 "stopwatch":{
 "value":{
 "startFrom":"00:45:00",
 "timeReference":"1753173655377",
 "current":"00:45:00",
 "state":"play"
 }

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 688

 }
 }
}

6.21.7 DataMap Explorer
The Data Explorer helps to visualize data present in the DataMap (in particular, JSON and XML formatted data.
Access the DataMap Explorer with the button on the top right corner of the template editor. It only opens when the
Template Editor is in UI or in BOTH mode.

Select from the DataMap Keys dropdown the data to visualize. It auto-detects the formatting.

With the Tree View/Text View toggle button you can switch between a tree view style visualization of the data or
the plain textual view.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 689

For the purpose of testing, you can use Load File load the content of a file from disc into the selected DataMap key.
With the Copy button you can copy the current content into the clipboard.

Further down the UI a JSONPath or XPath Expression Tester allows you to make a query on the data. Press the Test
button or Return to evaluate the expression.

A sample expression that aggregates the field Column1 of all children under All into an array.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 690

If you are in Tree View mode you can simply select a item in the tree view and double click on it to get an
automated expression:

Expand the syntax reference to get a quick guide on the query syntax:

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 691

Once satisfied with the expression you can select a UI parameter and hit the Apply button. It assigns the Linked
Data Key and Linked Data Query properties accordingly and it attempts to assign the value to the component. Not
all values can be applied to all parameters. The dropdown, for example, accepts only string arrays, while the Text
Parameter accepts only strings.

In conjunction with Table Parameters, here are two samples on how to automatically apply data to a table. Here we
use the query $.GroupA[*]['Rank','Code'] .

The result is a one dimensional array with Rank and Code interleaving, that means that the destination table needs
to have the exact same column layout as the queried data.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 692

A more robust approach would be to use to simplify the query by just using $.GroupA. We have to make sure though
that the table headers match exactly the names in the json structure (Rank and Code in this case). We also need to
check the properties Match Header Columns and optionally Match Linked Data Rows to automatically match the
number of rows in the table with the data.

For XML data and XPath queries the same applies as described above, the only difference is the query syntax.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 693

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 694

7 Troubleshooting
This page covers the following topics:

 Vizrt Issues
 Unable to Load Scene
 Graphic Hub Not Connected
 Preview Not Connected
 Output Initialize Failed
 Cannot Connect/Send to Viz Engine
 Cannot Send Shared Memory Commands

 Unreal Engine
 Unreal Engine not Available
 Cannot Connect/Send to Unreal Engine
 Unable to Load Unreal Level

 NDI
 Support

7.1 Vizrt Issues

7.1.1 Unable to Load Scene

Make sure that there is a channel associated to a scene, and that you are connected to a Vizrt profile.

Check if Viz Engine is up and running.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 695

Viz Arc cannot find the selected scene. Check that you are connected to the correct Graphic Hub.

7.1.2 Graphic Hub Not Connected

 Check if Graphic Hub is up and running.
 Check in the Config window that the Graphic Hub REST settings are correct (Host/IP and Port, Username

and password).
 Check that the machine on which Viz Arc is installed is connected to the machine containing Graphic Hub.
 Follow the procedure in General Configuration to correctly configure Graphic Hub REST in Viz Arc.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 696

7.1.3 Preview Not Connected

 Check if Viz Engine is up and running.
 Check in the Config window that the Viz GH and MSE settings are correct (Host/IP and Port).
 Check that the machine on which Viz Arc is installed is connected to a Viz Engine.
 See the section Configuring Viz Engine.

7.1.4 Output Initialize Failed

 Check that Viz Engine is configured in RGBA output format.
 Ensure that there is a valid Viz IP Stream Output license.
 Check that you are using Viz Engine 3.9 or higher.
 See the section Configuring Viz Engine.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 697

7.1.5 Cannot Connect/Send to Viz Engine

Check that Viz Engine is up and running and set in On Air mode.

Check that Viz Engine is set in On Air mode.

7.1.6 Cannot Send Shared Memory Commands
If Viz Engine can’t receive SHM commands, it's possible that the UDP and TPC ports are not configured in Viz Config.
In Viz Engine, go to Config > Communication > Shared Memory.

For more information, see Profiles.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 698

7.2 Unreal Engine

7.2.1 Unreal Engine not Available

 Check that Unreal Engine is up and in Play Mode.
 Check in the Config window that the Unreal Engine settings are correct (Host/IP and Port).
 Check that the Viz Arc machine is connected to the machine containing Unreal Engine.
 Check that you have copied the arcCom plug-in folder to \Epic Games\UE_4.20\Engine\Plugins.
 See Profiles for more information on configuring Unreal Engine in Viz Arc.

7.2.2 Cannot Connect/Send to Unreal Engine

Check that Unreal Engine is up and running and set in Play mode.

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 699

Check that Unreal Engine is set in Play mode.

Check if the Unreal Launcher service is running and responding by pointing a web browser to http://hostname:5644
where 5644 is the launcher port.

7.2.3 Unable to Load Unreal Level

Ensure that there is a channel associated to a Level, and that you are connected to an Unreal Engine profile.

Check that Unreal Engine is running and in Play mode.

http://hostname:5644

Viz Arc User Guide - 3.0

Copyright © 2026 Vizrt Page 700

Viz Arc cannot find the selected Level. Check that you are loading a Level that exists in the selected project.

7.3 NDI
Viz Arc gives priority to the installed NDI runtime library which is stored in the environment
variable NDI_RUNTIME_DIR_V5. If this environment variable is present, all NDI related dll's are loaded from this
folder.

If NDI_RUNTIME_DIR_V5 is not present, Viz Arc will check for NDI_RUNTIME_DIR_V4 and load the dll's from there
in case the folder exists. If none of the above environment variables are set, Viz Arc uses the shipped NDI dll's which
can be found in the Viz Arc installation folder (for example C:\Program Files\Vizrt\Viz Arc 1.9\NDI).

In some cases the installed NDI libraries might cause incompatibilities with Viz Arc resulting in NDI video streams
not visualizing although the streams are seen by Viz Arc. In those cases you can force Viz Arc to use the shipped dll's
by copying all the content of C:\Program Files\Vizrt\Viz Arc 1.9\NDI into the main program folder C:\Program
Files\Vizrt\Viz Arc 1.9. Administration privileges are required and a restart of the application is needed to apply the
changes.

7.4 Support
Support is available at the Vizrt Support Portal.

https://community.vizrt.com/

	Introduction
	Related Documents
	Feedback and Suggestions

	New in Viz Arc
	Getting Started
	System Overview
	Ports

	System Requirements
	Minimum Software Requirements
	Minimum Hardware Requirements
	Antivirus

	Installation
	Installing Viz Arc
	WIBU-based Licensing System
	Important Pre-installation Information

	Launching Viz Arc
	Command Line Arguments

	License
	Viz Arc Core
	Viz Arc Freemium
	Viz Arc AI
	Viz Arc REST
	License Locations
	License Configuration

	Files and Folders
	Unreal Plug-in
	Engine Service
	Prerequisites
	Installation
	Manual Installation
	Starting Engine Service
	Configuration
	Troubleshooting

	Configuring Graphic Hub
	Configuring Graphic Hub for the Viz Arc Template Workflow
	Import an Archive Containing Add-ons
	Manually Creating Add-ons

	Script Debugging
	How to Enable Viz Arc Script Debugger on Windows 7/8/8.1/10

	Configuration
	General Configuration
	General Settings
	System
	 Communication
	General
	Playlist
	Scripting
	Project Folder
	Unreal Engine
	AI/LLM Configuration
	Map
	Toast Notifications
	Performance
	User Interface Appearance
	Default Color Setting
	Configuring Viz Engine

	Profiles
	Profile Configuration
	Engine Configuration
	Channel Configuration

	Keyboard Shortcuts
	Keyboard Shortcuts
	To Manage Shortcuts
	To Add Custom Action Shortcuts

	Video Settings
	Preview Output

	GPI Setup
	GPI
	Triggers

	Timecode Setup
	Time Code

	Clip Setup
	Coder Preset
	Viz Recorder Preset

	Info
	AI MCP Server
	MCP Server Integration
	Available AI Tools
	Troubleshooting

	Tracking
	Tracking
	General
	SMURF Input
	Tracking Hub
	Performance
	Appearance
	Graphics

	Vizrt Systems
	Graphic Hub REST
	Media Service
	Viz One
	Viz Virtual Studio
	TCP Command Port
	Director

	Third Party Systems
	Vinten Automation Server
	Tecnopoint Automation Server
	Telemetrics Automation Server
	Utah Scientific Router
	Monogram
	MIDI Device
	Stream Deck
	Art-Net DMX

	Loupedeck Integration
	Installation

	Stream Deck Integration
	Installation
	Configuration
	Internal vs. External Stream Deck Control
	Usage

	Preview Studio Configuration
	Overview
	Configuration

	Companion Integration
	Installation

	Working with Viz Arc
	General Workflow
	User Interface
	Builder Mode
	On Air Mode
	Top Tool Bar
	Status Bar
	Main Menu and Project Toolbar
	Operations Toolbar
	Scenes Toolbar
	Import
	Export
	Builder Mode Panel

	4 Point Calibration
	About 4 Point Calibration
	Prerequisites
	To Add Calibration Points
	Calibration
	Applying Calibration

	Supported Action Types
	Project Action Types
	Scene Action Types
	Other Action Types

	Builder Mode
	Actions View
	Set View
	Script View
	Scenes Panel

	APIs
	Viz Arc In-App Web API
	REST API

	Data Integration
	Singal-R
	MQTT Broker
	TCP Server
	UDP Server
	DataMap Linking
	DataMap Websocket
	Excel and CSV Integration

	Integrations
	Art-Net DMX Integration
	Loupedeck
	MOS Integration
	Stream Deck
	Companion
	Viz Arena
	Working with Unreal Engine
	Timecode from Plura or NDI

	Engine Status Widget
	To Add an Engine Status Widget

	Graphic Hub Browser
	Main Features

	Import and Export
	Import Actions
	Export Actions

	Multizone Chroma Keying
	Configuring the Multizone Chroma Keyer
	Working with Polygons and the Map
	Multizone Chroma Key Action in Detail

	OCR
	To Add an OCR Widget

	On Air Mode
	To Go On Air
	On Air Mode Desktop Shortcut and Command Line Switches
	Builder-only Tabs

	Playlist
	Adding Actions to the Playlist
	Working with the Playlist
	Using the Playlist

	Preview Studio
	Recording
	Playback
	Limitations

	Preview
	Precision Keyer
	Simple
	Advanced
	Color Correction
	Picking
	Settings
	Presets
	Execution
	Web View

	Program and Preview
	Previewing by Keyboard Shortcut
	Previewing by CTRL Modifier
	Templates

	Projects
	Templates
	Creating a New Template
	Using a Template
	Adding Templates to a Master Scene
	Using Templates on a Scene Containing Multiple Top Level Control Objects
	Unreal Templates
	Flowics
	DataMap Explorer

	Troubleshooting
	Vizrt Issues
	Unable to Load Scene
	Graphic Hub Not Connected
	Preview Not Connected
	Output Initialize Failed
	Cannot Connect/Send to Viz Engine
	Cannot Send Shared Memory Commands

	Unreal Engine
	Unreal Engine not Available
	Cannot Connect/Send to Unreal Engine
	Unable to Load Unreal Level

	NDI
	Support

